

 John Dean
 Park University

 Raymond Dean
 University of Kansas

JAVA
WITH

 A Problem Solving Approach

 Introduction to Programming

dea7606X_fm_i-xxxviii.indd idea7606X_fm_i-xxxviii.indd i 21/12/12 3:54 PM21/12/12 3:54 PM

 INTRODUCTION TO PROGRAMMING WITH JAVA: A PROBLEM SOLVING APPROACH:

SECOND EDITION

 Published by McGraw-Hill, a business unit of The McGraw-Hill Companies, Inc., 1221 Avenue of the

Americas, New York, NY 10020. Copyright © 2014 by The McGraw-Hill Companies, Inc. All rights reserved.

Printed in the United States of America. Previous edition 2008. No part of this publication may be reproduced

or distributed in any form or by any means, or stored in a database or retrieval system, without the prior

written consent of The McGraw-Hill Companies, Inc., including, but not limited to, in any network or other

electronic storage or transmission, or broadcast for distance learning.

 Some ancillaries, including electronic and print components, may not be available to customers outside the

United States.

 This book is printed on acid-free paper.

 1 2 3 4 5 6 7 8 9 0 DOC/DOC 1 0 9 8 7 6 5 4 3

 ISBN 978–0–07–337606–6

 MHID 0–07–337606–x

 Vice President, General Manager: Marty Lange

 Editorial Director: Michael Lange

 Publisher: Raghothaman Srinivasan

 Marketing Manager: Curt Reynolds

 Development Editor: Katie Neubauer

 Project Manager: Melissa M. Leick

 Buyer: Sandy Ludovissy

 Media Project Manager: Prashanthi Nadipalli
 Cover Design: Studio Montage, St. Louis, MO

 Cover image: Chris Johnson
 Compositor: S4Carlisle Publishing Services

 Typeface: 10/12 Times Roman
 Printer: R. R. Donnelley Crawfordsville, IN

Figure 1.1b: © PhotoDisc/Getty Images; Figure 1.1c: © BigStock Photos; Figure 1.1d: © PhotoDisc/Getty

Images; Figure 1.1e: © BrandX/Punchstock; Figure 1.1f: © Ryan McVay/Getty Images; Figure 1.2a: © BigStock

Photos; Figure 1.2b: © BigStock Photos; Figure 1.2c: © BigStock Photos; Figure 1.4a: © BigStock Photos;

Figure 1.4b: © Getty Royalty Free; Figure 1.4c: © Oleksiy Mark | Dreamstime.com; Figure 1.4d: © BigStock

Photos; Figure ta2.1: Courtesy of the Naval Surface Warfare Center, Dahlgren, VA, 1988. US Naval History

and Heritage Command Photograph; Figure ta4.2: © Sergey Mostovoy | Dreamstime.com; Figure 5.13: Photo

courtesy of the authors; Figure 5.16: Photo courtesy of the authors; Figure 11.1: Courtesy of Rafael de Sant’Anna

Neri; Figure 14.5a: © Michael Pettigrew | Dreamstime.com

 All credits appearing on page or at the end of the book are considered to be an extension of the copyright

page.

 Library of Congress Cataloging-in-Publication Data

Dean, John, 1962-

 Introduction to programming Java : with a problem solving approach / John S. Dean, Raymond H. Dean.

 p. cm.

 Includes bibliographical references and index.

 ISBN 978–0–07–337606–6 (alk. paper) ISBN 0–07–337606–X (alk. paper) 1. Java (Computer program

language) I. Dean, Ray, 1936- II. Title.

QA76.73.J38D4264 2012

005.2'762—dc23 2012036870

 www.mhhe.com

dea7606X_fm_i-xxxviii.indd iidea7606X_fm_i-xxxviii.indd ii 13/12/12 8:20 PM13/12/12 8:20 PM

 Dedication
 —To Jordan and Caiden

dea7606X_fm_i-xxxviii.indd iiidea7606X_fm_i-xxxviii.indd iii 13/12/12 11:43 AM13/12/12 11:43 AM

 About the Authors

 John Dean is the Department Chair of the Computer Science and Mathematics

Department at Park University. He earned an M.S. degree in computer science

from the University of Kansas. He is Sun Java–certifi ed and has worked in indus-

try as a software engineer and project manager, specializing in Java and various

Web technologies—JavaScript, JavaServer Pages, and servlets. He has taught a full

range of computer science courses, including Java programming and Java-based Web

programming.

 Raymond Dean is a Professor Emeritus, Electrical Engineering and Computer Science,

University of Kansas. He earned an M.S. degree from MIT and a Ph.D. degree from

Princeton University, and he is a senior member of IEEE. He has published numerous

scientifi c papers and has 21 U.S. patents. He has industry experience in manufactur-

ing HVAC equipment and energy-management controls, as well as in system energy

analysis. At the University of Kansas, he taught a wide range of courses in electrical

engineering and computer science.

iv

dea7606X_fm_i-xxxviii.indd ivdea7606X_fm_i-xxxviii.indd iv 13/12/12 11:43 AM13/12/12 11:43 AM

v

 Contents

Preface x

Project Summary xxv

 C H A P T E R 1
 Introduction to Computers
and Programming 1

 1.1. Introduction 1

 1.2. Hardware Terminology 2

 1.3. Program Development 10

 1.4. Source Code 12

 1.5. Compiling Source Code into

Object Code 13

 1.6. Portability 14

 1.7. Emergence of Java 15

 1.8. Computer Ethics 17

 1.9. First Program—Hello World 18

 1.10. GUI Track: Hello World and Look

and Feel (Optional) 22

C H A P T E R 2
 Algorithms and Design 29

 2.1. Introduction 29

 2.2. Output 30

 2.3. Variables 31

 2.4. Operators and Assignment Statements 32

 2.5. Input 33

 2.6. Flow of Control and Flowcharts 34

 2.7. if Statements 35

 2.8. Loops 40

 2.9. Loop Termination Techniques 42

 2.10. Nested Looping 45

 2.11. Tracing 48

 2.12. Problem Solving: Other Pseudocode Formats

and an Asset Management Example 52

C H A P T E R 3
 Java Basics 62

 3.1. Introduction 63

 3.2. “I Have a Dream” Program 63

 3.3. Comments and Readability 64

 3.4. The Class Heading 66

 3.5. The main Method’s

Heading 66

 3.6. Braces 67

 3.7. System.out.println 68

 3.8. Compilation and Execution 70

 3.9. Identifi ers 70

 3.10. Variables 71

 3.11. Assignment Statements 72

 3.12. Initialization Statements 74

 3.13. Numeric Data Types— int , long , float ,

double 75

 3.14. Constants 77

 3.15. Arithmetic Operators 80

 3.16. Expression Evaluation and Operator

Precedence 83

 3.17. More Operators: Increment,

Decrement, and Compound

Assignment 85

 3.18. Tracing 87

 3.19. Type Casting 87

 3.20. char Type and Escape

Sequences 90

 3.21. Primitive Variables Versus Reference

Variables 92

 3.22. Strings 93

 3.23. Input—the Scanner Class 97

 3.24. Simple File Input for Repetitive

Testing During Program

Development 102

 3.25. GUI Track: Input and Output with

JOptionPane (Optional) 104

dea7606X_fm_i-xxxviii.indd vdea7606X_fm_i-xxxviii.indd v 13/12/12 11:43 AM13/12/12 11:43 AM

vi Contents

 C H A P T E R 4
 Control Statements 115

 4.1. Introduction 116

 4.2. Conditions and Boolean Values 1 16

 4.3. if Statements 1 17

 4.4. && Logical Operator 1 20

 4.5. | | Logical Operator 1 25

 4.6. ! Logical Operator 1 27

 4.7. switch Statement 1 28

 4.8. while Loop 1 32

 4.9. do Loop 1 35

 4.10. for Loop 1 36

 4.11. Solving the Problem of Which

Loop to Use 1 41

 4.12. Nested Loops 1 42

 4.13. boolean Variables 1 44

 4.14. Input Validation 1 48

 4.15. Problem Solving with Boolean Logic

(Optional) 1 49

 C H A P T E R 5
 Using Prebuilt Methods 1 62

 5.1. Introduction 1 63

 5.2. The API Library 1 64

 5.3. Math Class 1 67

 5.4. Wrapper Classes for Primitive

Types 1 72

 5.5. Character Class 176

 5.6. String Methods 178

 5.7. Formatted Output with the printf

Method 184

 5.8. Problem Solving with Random Numbers

(Optional) 1 88

 5.9. GUI Track: Drawing Images, Lines,

Rectangles, and Ovals in Java Applets

(Optional) 1 93

 5.10. GUI Track: Decorating an Image

by Covering It With a Tinted Pane

(Optional) 2 00

 Interlude 2 09

 Multiple-Method Programs in a Non-Object-

Oriented Environment 2 09

 C H A P T E R 6
 Object-Oriented Programming 2 13

 6.1. Introduction 2 14

 6.2. Object-Oriented Programming

Overview 2 14

 6.3. First OOP Class 2 17

 6.4. Driver Class 2 21

 6.5. Calling Object, this Reference 2 24

 6.6. Instance Variables 2 27

 6.7. Tracing an OOP Program 2 28

 6.8. UML Class Diagrams 2 33

 6.9. Local Variables 2 34

 6.10. The return Statement 2 36

 6.11. Argument Passing 2 40

 6.12. Specialized Methods—Accessors, Mutators,

and Boolean Methods 2 42

 6.13. Problem Solving with Simulation

(Optional) 2 45

 C H A P T E R 7
 Object-Oriented Programming—
Additional Details 2 62

 7.1. Introduction 2 63

 7.2. Object Creation—A Detailed Analysis 2 63

 7.3. Assigning a Reference 2 65

 7.4. Testing Objects for Equality 2 69

 7.5. Passing References as Arguments 2 74

 7.6. Method-Call Chaining 2 77

 7.7. Overloaded Methods 2 79

 7.8. Constructors 2 83

 7.9. Overloaded Constructors 2 89

 7.10. Class Variables 2 93

 7.11. Class Methods 2 96

 7.12. Named Constants 3 02

 7.13. Problem Solving with Multiple Driven

Classes 3 04

 C H A P T E R 8
 Software Engineering 3 17

 8.1. Introduction 3 18

 8.2. Coding-Style Conventions 3 18

 8.3. Documentation for Outsiders 3 27

 8.4. Helper Methods 3 30

dea7606X_fm_i-xxxviii.indd videa7606X_fm_i-xxxviii.indd vi 13/12/12 11:43 AM13/12/12 11:43 AM

 Contents vii

 8.5. Encapsulation (with Instance Variables and

Local Variables) 335

 8.6. Recognizing the User’s Point of View 3 37

 8.7. Design Philosophy 3 38

 8.8. Top-Down Design 3 42

 8.9. Bottom-Up Design 3 51

 8.10. Case-Based Design 3 53

 8.11. Iterative Enhancement 3 53

 8.12. Merging the Driver Method into the Driven

Class 3 55

 8.13. Accessing Instance Variables Without

Using this 3 57

 8.14. Writing Your Own Utility Class 3 57

 8.15. Problem Solving with the API Calendar

Class (Optional) 3 60

 8.16. GUI Track: Problem Solving with

CRC Cards (Optional) 3 62

 C H A P T E R 9
 Arrays 3 76

 9.1. Introduction 3 77

 9.2. Array Basics 3 77

 9.3. Array Declaration and Creation 3 79

 9.4. Array length Property and Partially Filled

Arrays 3 83

 9.5. Copying an Array 3 85

 9.6. Problem Solving with Array Case

Studies 3 88

 9.7. Searching an Array 3 93

 9.8. Sorting an Array 4 00

 9.9. Two-Dimensional Arrays 4 04

 9.10. Arrays of Objects 4 10

 9.11. For-Each Loops 416

 C H A P T E R 10
 ArrayList s and an Introduction to the
Java Collections Framework 4 27

 10.1. Introduction 4 28

 10.2. The ArrayList Class 4 29

 10.3. Storing Primitives in an ArrayList 435

 10.4. ArrayList Example Using Anonymous

Objects and the For-Each Loop 4 38

 10.5. ArrayLists Versus Standard Arrays 4 42

 10.6. The LinkedList Class 4 43

 10.7. The List Interface 4 44

 10.8. Problem Solving: How to Compare Method

Execution Times 4 45

 10.9. Queues, Stacks, and the ArrayDeque

Class 4 49

 10.10. Overview of the Java Collections

Framework 4 56

 10.11. Collections Example—Information

Flow in a Network of Friends 4 59

 C H A P T E R 11
Recursion 4 73

 11.1. Introduction 4 74

 11.2. Guidelines for Writing a Recursive

Method 4 75

 11.3. A Recursive Factorial Method 4 76

 11.4. Comparison of Recursive and Iterative

Solutions 4 80

 11.5. Recursive Method Evaluation

Practice 4 84

 11.6. Binary Search 4 87

 11.7. Merge Sort 490

 11.8. Towers of Hanoi 4 94

 11.9. GUI Track: Drawing Trees with a Fractal

Algorithm (Optional) 4 98

 11.10. Performance Analysis 5 07

 C H A P T E R 12
 Type Details and Alternative Coding
Mechanisms 5 16

 12.1. Introduction 5 17

 12.2. Integer Types and Floating-Point Types 5 17

 12.3. char Type and the ASCII Character Set 5 21

 12.4. Type Conversions 5 24

 12.5. Prefi x/Postfi x Modes for Increment/

Decrement Operators 5 26

 12.6. Embedded Assignments 5 29

 12.7. Conditional Operator Expressions 5 31

 12.8. Expression Evaluation Review 5 32

 12.9. Short-Circuit Evaluation 5 36

 12.10. Empty Statement 5 37

 12.11. break Statement Within a Loop 5 39

 12.12. for Loop Header Details 5 40

 12.13. Enumerated Types 5 42

dea7606X_fm_i-xxxviii.indd viidea7606X_fm_i-xxxviii.indd vii 13/12/12 11:43 AM13/12/12 11:43 AM

viii Contents

 12.14. Hexadecimal, Octal, and Binary

Numbers 5 49

 12.15. GUI Track: Unicode (Optional) 5 50

 12.16. Introduction to GridWorld Case Study

(Optional) 5 54

 C H A P T E R 13
 Aggregation, Composition,
and Inheritance 5 65

 13.1. Introduction 5 66

 13.2. Composition and Aggregation 5 66

 13.3. Inheritance Overview 5 73

 13.4. Implementation of a Person/Employee/
FullTime Hierarchy 5 77

 13.5. Constructors in a Subclass 5 79

 13.6. Method Overriding 5 80

 13.7. Using the Person/Employee/FullTime

Hierarchy 5 83

 13.8. The final Access Modifi er 5 84

 13.9. Using Inheritance with Aggregation and

Composition 5 84

 13.10. Design Practice with Card Game

Example 5 88

 13.11. GridWorld Case Study Extensions

(Optional) 5 93

 13.12. Problem Solving with Association Classes

(Optional) 6 00

 C H A P T E R 14
 Inheritance and Polymorphism 6 12

 14.1. Introduction 6 13

 14.2. The Object Class and Automatic Type

Promotion 6 13

 14.3. The equals Method 6 14

 14.4. The toString Method 6 18

 14.5. Polymorphism and Dynamic Binding 6 23

 14.6. Assignments Between Classes in a Class

Hierarchy 628

 14.7. Polymorphism with Arrays 6 29

 14.8. a bstract Methods and Classes 6 35

 14.9. Interfaces 6 38

 14.10. The protected Access Modifi er 6 44

 14.11. GUI Track: Three-Dimensional Graphics

(Optional) 6 49

 C H A P T E R 15
 Exception Handling 6 61

 15.1. Introduction 6 62

 15.2. Overview of Exceptions and Exception

Messages 6 62

 15.3. Using try and catch Blocks to Handle

“Dangerous” Method Calls 6 63

 15.4. Line Plot Example 6 65

 15.5. try Block Details 6 69

 15.6. Two Categories of Exceptions—Checked and

Unchecked 6 70

 15.7. Unchecked Exceptions 6 72

 15.8. Checked Exceptions 6 75

 15.9. Generic catch Block with Exception

Class 6 79

 15.10. Multiple catch Blocks and Multiple

Exceptions Per Block 6 82

 15.11. Understanding Exception Messages 6 84

 15.12. Using throws <exception-type > to Postpone

the catch 688

 15.13. Automatic Cleanup Using Try-With-

Resources 6 90

 15.14. GUI Track and Problem Solving: Line Plot

Example Revisited (Optional) 6 92

 C H A P T E R 16
 Files, Buffers, Channels,
and Paths 7 09

 16.1. Introduction 7 10

 16.2. Simple Text-File Example: HTML

File Generator 7 11

 16.3. A Website Reader 7 15

 16.4. Object File I/O 717

 16.5. Character Sets and File-Access

Options 7 21

 16.6. Buffered Text File I/O 7 23

 16.7. Primitive Buffers with Random

Access 7 27

 16.8. Channel I/O and Memory-Mapped Files 7 34

 16.9. Path, Whole-File, and Directory

Operations 7 40

 16.10. Walking a Directory Tree 7 43

 16.11. GUI Track: The JFileChooser Class

(Optional) 7 48

dea7606X_fm_i-xxxviii.indd viiidea7606X_fm_i-xxxviii.indd viii 21/12/12 4:50 PM21/12/12 4:50 PM

 Contents ix

 C H A P T E R 17
 GUI Programming Basics 7 61

 17.1. Introduction 7 62

 17.2. Event-Driven Programming Basics 7 63

 17.3. A Simple Window Program 7 64

 17.4. JFrame Class 7 66

 17.5. Java Components 7 68

 17.6. JLabel Component 7 69

 17.7. JTextField Component 7 70

 17.8. Greeting Program 7 71

 17.9. Component Listeners 7 74

 17.10. Inner Classes 7 75

 17.11. Anonymous Inner Classes 7 76

 17.12. JButton Component 7 79

 17.13. Dialog Boxes and the JOptionPane

Class 7 84

 17.14. Distinguishing Between Multiple Events 7 88

 17.15. Using getActionCommand to Distinguish

Between Multiple Events 7 90

 17.16. Color 7 91

 17.17. How GUI Classes Are Grouped Together 7 96

 17.18. Mouse Listeners and Images (Optional) 7 97

 C H A P T E R 18
 GUI Programming—Component Layout,
Additional GUI Components 8 10

 18.1. Introduction 8 11

 18.2. GUI Design and Layout Managers 8 11

 18.3. FlowLayout Manager 8 13

 18.4. BoxLayout Manager 8 15

 18.5. BorderLayout Manager 8 21

 18.6. GridLayout Manager 8 26

 18.7. Tic-Tac-Toe Example 8 30

 18.8. Problem Solving: Winning at Tic-Tac-Toe

(Optional) 8 32

 18.9. Embedded Layout Managers 8 35

 18.10. JPanel class 8 36

 18.11. MathCalculator Program 8 37

 18.12. JTextArea Component 8 41

 18.13. JCheckBox Component 8 44

 18.14. JRadioButton Component 8 47

 18.15. JComboBox Component 8 48

 18.16. Job Application Example 8 51

 18.17. More Swing Components 8 57

Appendices

Appendix 1 ASCII Character Set 869

Appendix 2 Operator Precedence 871

Appendix 3 Java Reserved Words 873

Appendix 4 Packages 877

Appendix 5 Java Coding-Style Conventions 881

Appendix 6 Javadoc with Tags 893

Appendix 7 UML Diagrams 898

Appendix 8 Number Systems and Conversions

Between Them 904

On the Book’s Website

Chapter S6 Writing Methods in a Non-Object-

Oriented Environment

Chapter S9 Arrays in a Non-Object-Oriented

Environment

Chapter S17 JavaFX GUI Programming Basics

Chapter S18 JavaFX GUI Programming -

Component Layout, Additional GUI

Components

Appendix 9 Multithreading

Appendix 10 Closures

dea7606X_fm_i-xxxviii.indd ixdea7606X_fm_i-xxxviii.indd ix 13/12/12 11:43 AM13/12/12 11:43 AM

x

 Preface

 In this book, we lead you on a journey into the fun and exciting world of computer programming. Through-

out your journey, we’ll provide you with lots of problem-solving practice. After all, good programmers need

to be good problem solvers. We’ll show you how to implement your problem solutions with Java programs.

We provide a plethora of examples, some short and focused on a single concept, some longer and more “real

world.” We present the material in a conversational, easy-to-follow manner aimed at making your journey a

pleasant one. When you’re done with the book, you should be a profi cient Java programmer.

 Our textbook targets a wide range of readers. Primarily, it targets students in a standard college-level

“Introduction to Programming” course or course sequence where no prerequisite programming experience

is assumed. We have tried to include all the topics recommended by the College Board for students studying

for advanced placement (AP) in computer science. So this text should be good for these students as well.

 In addition to targeting students with no prerequisite programming experience, our textbook targets

industry practitioners and college-level students who have some programming experience and want to learn

Java. This second set of readers can skip the early chapters on general programming concepts and focus

on the features of Java that differ from the languages that they already know. In particular, because C++

and Java are similar, readers with a C++ background should be able to cover the textbook in a single three-

credit-hour course. (But let us reiterate for those of you with no programming experience: You should be

fi ne. No prerequisite programming experience is required.)

 Finally, our textbook targets high school students and readers outside of academia with no program-

ming experience. This third set of readers should read the entire textbook at a pace determined on a case-

by-case basis.

 What’s New in This Edition?

 The changes in this edition are big and small. Big changes include new chapters, reorganized chapter

sections, new programming constructs, and new programs. Smaller changes include updating descriptions,

anecdotes, examples, exercises, and projects. We’ve combed the entire book for opportunities to improve the

book’s clarity and readability. The following list highlights the more signifi cant changes we’ve made for this

edition.

• Language Enhancements

 We wrote the fi rst edition when the standard Java compiler was Java 6. Back then, we described most

of Java 6’s language features—but not all. With this edition, we present additional language features

that were previously omitted, including the assert keyword, enumerated types (enums), and variable-

length argument lists (varargs).

 We describe several Java language enhancements that were introduced in Java 7—numeric literals with

underscores, binary literals, switch statements with strings, and type inferences with the diamond operator.

 We present closures, a language feature introduced in Java 8, as an appendix on the book’s website.

A closure is a block of code that can be passed to a method and executed later. Among other things,

closures are intended to clean up the messiness of anonymous inner classes.

dea7606X_fm_i-xxxviii.indd xdea7606X_fm_i-xxxviii.indd x 13/12/12 11:43 AM13/12/12 11:43 AM

• Introductory Chapter

 To keep up with the computer industry’s continued growth, we’ve made many changes to Chapter 1,

such as updating the information in the computer hardware and Java history sections. In addition to the

many updates in the preexisting sections, we’ve added a new short section on computer ethics.

• Accommodation for Late Objects Advocates

 Some of our fi rst edition readers suggested that before launching into a full discussion of object-

oriented programming (OOP) in Chapter 6, we should describe multiple-method programs in a non-

OOP environment. To accommodate that suggestion, we include a short Interlude “mini-chapter”

named “Multiple-Method Programs in a Non-Object-Oriented Environment” between Chapters 5 and 6.

We anticipate that most readers will benefi t from and be satisfi ed by that brief discussion. However, we

realize that some readers will want more. Some of the readers of our fi rst edition advocated for a “late

objects” approach, with complete details on multiple-method programs and complete details on arrays,

all before starting OOP in Chapter 6. To support that approach, we provide those details in two supple-

mental chapters on the book’s website. The Interlude encourages late objects advocates to read those

supplemental chapters before returning to Chapter 6.

• Reduced Emphasis on Class Variables and Class Methods

 Based on feedback from readers of the fi rst edition, we’ve eliminated the “Classes with Class Mem-

bers” chapter and moved a rewritten subset of that material to the end of Chapter 7.

• Software Engineering

 To provide more emphasis on documentation, we’ve moved a subset of the javadoc material forward,

from the Javadoc appendix up to Chapter 8. In Chapter 8, we introduce the notion of pre- and post-

conditions and include pre- and post-condition comments in code examples.

• New Chapter—ArrayLists and an Introduction to the Java Collections Framework

 We’ve written a new chapter that describes various classes and interfaces in the Java Collections Frame-

work, with an emphasis on the ArrayList class, the List interface, queues, and stacks. Within this

context, we describe Java generics and multiclass interfaces. The chapter provides an easily accessible

glimpse of data structures and their applications.

• New Chapter—Recursion

 We’ve written a new chapter on recursion that combines the content from the fi rst edition’s “Recursion”

appendix with new content. The chapter, Chapter 11, explains how to analyze and write recursive methods,

and it presents a signifi cant number of complete recursive programs, including a merge sort program and a

graphical user interface (GUI) fractal program that draws an animated picture of a grove of growing trees.

• Performance Analysis

 In our chapters on arrays, collections, and recursion, we’ve added some performance analysis discus-

sion to our presentation of various algorithms and data structures. For the sequential search, binary

search, merge sort, and several other types of algorithms, we include brief discussions of how execu-

tion times depend on the number of items being processed. For Java’s ArrayList, LinkedList, and

ArrayDeque classes, we compare measured execution times for various operations. In a separate sec-

tion at the end of Chapter 11, we introduce the Big O notation and use it to quantify the performance of

various algorithms.

 Preface xi

dea7606X_fm_i-xxxviii.indd xidea7606X_fm_i-xxxviii.indd xi 20/12/12 5:41 PM20/12/12 5:41 PM

• New Multiple-Section Case Study

 In sections at the ends of Chapters 12 and 13, we describe and provide enhancements to the GridWorld

program, a legacy case study from the College Board’s Advanced Placement (AP) Computer Science

curriculum. The GridWorld program implements simple animation. It shows bugs crawling around,

bumping into things, changing direction as a result, eating plants or other critters, planting new fl owers,

changing color based on events or passage of time, and so on. We provide keyed exercises to put GridWorld

features in the context of our book’s presentation.

• Rewritten Chapter—Exception Handling

 We’ve rewritten about half of Chapter 15, the exception handling chapter, taking advantage of new

Java 7 exception handling constructs — automatic resource management within a try block heading

and multiple parameters within a catch block heading.

• Rewritten Chapter—File Handling

 We’ve rewritten almost the entire fi le handling chapter, Chapter 16, taking advantage of NIO.2, which

is Java 7’s new fi le system application programming interface (API). The chapter puts greater emphasis

on fi le handling that relates to Internet communication by including alternate character sets, alternate

input/output (IO) options, and random access to buffered and channeled IO. Additionally, the chapter

includes memory mapping and fi le system traversal techniques.

 For readers who want to use fi les early, we’ve introduced in Chapter 3 an optional “quick and dirty”

fi le input technique that appends a throws Exception clause to the main method.

• Better Visuals and More GUI

 We describe the Nimbus look and feel and explain how users can confi gure their computers to use it.

Oracle rolled out Nimbus in a later release of Java 6 and started recommending it with the advent of

Java 7. We use the Nimbus look and feel for all window screenshots throughout the book.

 Also, we have added a description of image decoration that uses semitransparent layers.

• New Supplemental GUI Chapters Using JavaFX

 With the release of Java 8, JavaFX replaced Swing as Oracle’s preferred GUI toolkit. Thus, we’ve writ-

ten two supplemental GUI chapters, S17 and S18, found on the book’s website, that are dedicated to

describing JavaFX. Because Swing will remain popular for quite some time, we explain and use Swing

in the early optional GUI tracks and in Chapters 17 and 18. Our parallel descriptions of Swing and

JavaFX give readers a chance to see how the old compares with the new.

• New Appendix—Number Systems and Conversions Between Them

 We’ve written a new appendix that describes how numbers are represented in different bases — decimal, bi-

nary, octal, and hexadecimal. The appendix provides algorithms for converting between the number bases.

 Compliant with the College Board’s AP
Computer Science Curriculum

 As noted by teachers using the fi rst edition in their AP Computer Science courses, the fi rst edition covered

most of the College Board’s AP Computer Science curriculum content. We have put a great deal of effort

xii Preface

dea7606X_fm_i-xxxviii.indd xiidea7606X_fm_i-xxxviii.indd xii 13/12/12 11:43 AM13/12/12 11:43 AM

into ensuring that this second edition follows all the AP Computer Science guidelines, as put forth by the

College Board.

 This second edition has been reviewed by a former member of the AP Computer Science Development

Committee, Judy Hromcik. She states that at the time of its printing, this edition is fully compliant with the

College Board’s AP Computer Science curriculum.

 Textbook Cornerstone #1: Problem Solving

 Being able to solve problems is a critical skill that all programmers must possess. We teach programmatic

problem solving by emphasizing two of its key elements—algorithm development and program design.

 Emphasis on Algorithm Development
 In Chapter 2, we immerse readers into algorithm development by using pseudocode for the algorithm ex-

amples instead of Java. In using pseudocode, students are able to work through non-trivial problems on

their own without getting bogged down in Java syntax—no need to worry about class headings, semicolons,

braces, and so on. 1 Working through non-trivial problems enables students to gain an early appreciation for

creativity, logic, and organization. Without that appreciation, Java students tend to learn Java syntax with

a rote-memory attitude. But with that appreciation, students tend to learn Java syntax more quickly and

effectively because they have a motivational basis for learning it. In addition, they are able to handle non-

trivial Java homework assignments fairly early because they have prior experience with similarly non-trivial

pseudocode homework assignments.

 In Chapter 3 and in later chapters, we rely primarily on Java for algorithm-development examples. But

for the more involved problems, we sometimes use high-level pseudocode to describe fi rst-cut proposed

solutions. Using pseudocode enables readers to bypass syntax details and focus on the algorithm portion of

the solution.

 Emphasis on Program Design
 Problem solving is more than just developing an algorithm. It also involves fi guring out the best implemen-

tation for the algorithm. That’s program design. Program design is extremely important, and that’s why we

spend so much time on it. Frequently, we explain the thought processes that a person might go through when

coming up with a solution. For example, we explain how to choose between different loop types, how to split

up a method into multiple methods, how to decide on appropriate classes, how to choose between instance

and class members, and how to determine class relationships using inheritance and composition. We chal-

lenge students to fi nd the most elegant implementations for a particular task.

 We devote a whole chapter to program design—Chapter 8, “Software Engineering.” In that chap-

ter, we provide an in-depth look at coding-style conventions and documentation for programmers and us-

ers. We discuss design strategies like separation of concerns, modularization, and encapsulation. Also in

the chapter, we describe alternative design strategies—top-down, bottom-up, case-based, and iterative

enhancement.

 1 Inevitably, we use a particular style for our pseudocode, but we repeatedly emphasize that other pseudocode styles are fi ne so long

as they convey the intended meaning. Our pseudocode style is a combination of free-form description for high-level tasks and more

specifi c commands for low-level tasks. We’ve chosen a pseudocode style that is intuitive, to welcome new programmers, and struc-

tured, to accommodate program logic.

 Preface xiii

dea7606X_fm_i-xxxviii.indd xiiidea7606X_fm_i-xxxviii.indd xiii 13/12/12 11:43 AM13/12/12 11:43 AM

 Problem-Solving Sections
 We often address problem solving (algorithm development and program design) in the natural fl ow of ex-

plaining concepts. But we also cover problem solving in sections that are wholly devoted to it. In each

problem-solving section, we present a situation that contains an unresolved problem. In coming up with a

solution for the problem, we try to mimic the real-world problem-solving experience by using an iterative

design strategy. We present a fi rst-cut solution, analyze the solution, and then discuss possible improvements

to it. We use a conversational trial-and-error format (e.g., “What type of layout manager should we use? We

fi rst tried the GridLayout manager. That works OK, but not great. Let’s now try the BorderLayout

manager.”). This casual tone sets the student at ease by conveying the message that it is normal, and in fact

expected, that a programmer will need to work through a problem multiple times before fi nding the best

solution.

 Additional Problem-Solving Mechanisms
 We include problem-solving examples and problem-solving advice throughout the text (not just in Chapter 2,

Chapter 8, and the problem-solving sections). As a point of emphasis, we insert a problem-solving box, with

an icon and a succinct tip, next to the text that contains the problem-solving example and/or advice.

 We are strong believers in learning by example. As such, our textbook contains a multitude of complete

program examples. Readers are encouraged to use our programs as recipes for solving similar programs on

their own.

 Textbook Cornerstone #2: Fundamentals First

 Postpone Concepts That Require Complex Syntax
 We feel that many introductory programming textbooks jump too quickly into concepts that require com-

plex syntax. In using complex syntax early, students get in the habit of entering code without fully under-

standing it or, worse yet, copying and pasting from example code without fully understanding the example

code. That can lead to less-than-ideal programs and students who are limited in their ability to solve a wide

variety of problems. Thus, we prefer to postpone concepts that require complex syntax. We prefer to intro-

duce such concepts later on, when students are better able to understand them fully.

 As a prime example of that philosophy, we cover the simpler forms of GUI programming early (in

an optional graphics track), but we cover the more complicated forms of GUI programming later in the

book. Specifi cally, we postpone event-driven GUI programming until the end of the book. This is differ-

ent from some other Java textbooks, which favor early full immersion into event-driven GUI program-

ming. We feel that strategy is a mistake because proper event-driven GUI programming requires a great

deal of programming maturity. When they learn it at the end of the book, our readers are better able to

understand it fully.

 Tracing Examples
 To write code effectively, it’s imperative to understand code thoroughly. We’ve found that step-by-step trac-

ing of program code is an effective way to ensure thorough understanding. Thus, in the earlier parts of the

textbook, when we introduce a new programming structure, we often illustrate it with a meticulous trace.

The detailed tracing technique we use illustrates the thought process programmers employ while debug-

ging. It’s a printed alternative to the sequence of screen displays generated by debuggers in integrated devel-

opment environment (IDE) software.

xiv Preface

dea7606X_fm_i-xxxviii.indd xivdea7606X_fm_i-xxxviii.indd xiv 13/12/12 11:43 AM13/12/12 11:43 AM

 Input and Output
 In the optional GUI-track sections and in the GUI chapters at the end of the book, we use GUI commands for

input and output (I/O). But because of our emphasis on fundamentals, we use console commands for I/O for the

rest of the book. 2 For console input, we use the Scanner class. For console output, we use the standard System
.out.print , System.out.println , and System.out.printf methods.

 Textbook Cornerstone #3: Real World

 More often than not, today’s classroom students and industry practitioners prefer to learn with a hands-on,

real-world approach. To meet this need, our textbook and its associated website include:

• c ompiler tools

• complete program examples

• practical guidance in program design

• c oding-style guidelines based on industry standards

• Unifi ed Modeling Language (UML) notation for class relationship diagrams

• p ractical homework-project assignments

 Compiler Tools
 We do not tie the textbook to any particular compiler tool—you are free to use any compiler tool(s) that you

like. If you do not have a preferred compiler in mind, then you might want to try out one or more of these:

• Java Standard Edition Development Kit (JDK), by Oracle

• TextPad, by Helios

 • Eclipse, by the Eclipse Foundation

 • Netbeans, backed by Oracle

 • BlueJ, by the University of Kent and Deaken University

 To obtain the above compilers, visit our textbook website at http://www.mhhe.com/dean, fi nd the

appropriate compiler link(s), and download away for free.

 Complete Program Examples
 In addition to providing code fragments to illustrate specifi c concepts, our textbook contains lots of com-

plete program examples. With complete programs, students are able to (1) see how the analyzed code ties in

with the rest of a program, and (2) test the code by running it.

 Coding-Style Conventions
 We include coding-style tips throughout the textbook. The coding-style tips are based on Oracle’s coding

conventions (http://www.oracle.com/technetwork/java/codeconv-138413.html) and industry practice. In

Appendix 5, we provide a complete reference for the book’s coding-style conventions and an associated ex-

ample program that illustrates these conventions.

 2 We introduce GUI I/O early on with the JOptionPane class. That opens up an optional door for GUI fans. If readers are so in-

clined, they can use JOptionPane to implement all our programs with GUI I/O rather than console I/O. To do so, they replace all

console I/O method calls with JOptionPane method calls.

 Preface xv

dea7606X_fm_i-xxxviii.indd xvdea7606X_fm_i-xxxviii.indd xv 13/12/12 11:43 AM13/12/12 11:43 AM

 UML Notation
 UML has become a standard for describing the entities in large software projects. Rather than overwhelm

beginning programmers with syntax for the entire UML (which is quite extensive), we present a subset of

UML. Throughout the textbook, we incorporate UML notation to represent classes and class relationships

pictorially. For those interested in more details, we provide additional UML notation in Appendix 7.

 Homework Problems
 We provide homework problems that are illustrative, practical, and clearly worded. The problems range

from easy to challenging. They are grouped into three categories—review questions, exercises, and projects.

We include review questions and exercises at the end of each chapter, and we provide projects on our text-

book’s website.

 The review questions tend to have short answers, and the answers are in the textbook. The review ques-

tions use these formats: short-answer, multiple-choice, true/false, fi ll-in-the-blank, tracing, debugging, and

write a code fragment. Each review question is based on a relatively small part of the chapter.

 The exercises tend to have short to moderate-length answers, and the answers are not in the textbook.

The exercises use these formats: short-answer, tracing, debugging, and write a code fragment. Exercises are

keyed to the highest prerequisite section number in the chapter, but they sometimes integrate concepts from

several parts of the chapter.

 The projects consist of problem descriptions whose solutions are complete programs. Project solutions

are not in the textbook. Projects require students to employ creativity and problem-solving skills and apply

what they’ve learned in the chapter. These projects often include optional parts, which provide challenges

for the more talented students. Projects are keyed to the highest prerequisite section number in the chapter,

but they often integrate concepts from several preceding parts of the chapter.

 An important special feature of this book is the way that it specifi es problems. “Sample sessions” show

the precise output generated for a particular set of input values. These sample sessions include inputs that

represent typical situations and sometimes also extreme or boundary situations.

 Academic-Area Projects
 To enhance the appeal of projects and to show how the current chapter’s programming techniques might

apply to different areas of interest, we take project content from several academic areas:

 • computer science and numerical methods

 • business and accounting

 • social sciences and statistics

 • math and physics

 • engineering and architecture

 • biology and ecology

 The academic-area projects do not require prerequisite knowledge in a particular area. Thus, instructors are

free to assign any of the projects to any of their students. To provide a general reader with enough special-

ized knowledge to work a problem in a particular academic area, we sometimes expand the problem state-

ment to explain a few special concepts in that academic area.

 Most of the academic-area projects do not require students to have completed projects from earlier

chapters; that is, the projects do not build on each other. Thus, instructors are free to assign projects without

worrying about prerequisite projects. In some cases, a project repeats a previous chapter’s project with a

xvi Preface

dea7606X_fm_i-xxxviii.indd xvidea7606X_fm_i-xxxviii.indd xvi 13/12/12 11:43 AM13/12/12 11:43 AM

different approach. The teacher may elect to take advantage of this repetition to dramatize the availability of

alternatives, but this is not necessary.

 Project assignments can be tailored to fi t readers’ needs. For example:

• For readers outside of academia—

 Readers can choose projects that match their interests.

• When a course has students from one academic area—

 Instructors can assign projects from the relevant academic area.

• When a course has students with diverse backgrounds—

 Instructors can ask students to choose projects from their own academic areas, or instructors can ignore

the academic-area delineations and simply assign projects that are most appealing.

 To help you decide which projects to work on, we’ve included a “Project Summary” section after the

preface. It lists all the projects by chapter, and for each project, it specifi es:

 • the associated section within the chapter

 • the academic area

 • the length and diffi culty

 • a brief description

 After using the “Project Summary” section to get an idea of which projects you might like to work on, see

the textbook’s website for the full project descriptions.

 Organization

 In writing this book, we lead readers through three important programming methodologies: structured pro-

gramming, OOP, and event-driven programming. For our structured programming coverage, we introduce

basic concepts such as variables and operators, if statements, and loops. Then we show readers how to call

prebuilt methods from Oracle’s Java API library. Many of these methods, like those in the Math class, are

non-OOP methods that can be called directly. Others, like those in the String class, are OOP methods that

must be called by a previously created object. After an “interlude” that gives readers a brief taste of what

it’s like to write methods in a non-OOP environment, we move into OOP programming, and introduce basic

OOP concepts such as classes, objects, instance variables, instance methods, and constructors. We also in-

troduce class variables and class methods, which are useful in certain situations. However, we note that they

should be used less often than instance variables and instance methods. Next, we move on to more advanced

OOP concepts—arrays, collections, interfaces, and inheritance. Chapters on exception handling and fi les

provide a transition into event-driven GUI programming. We describe event-driven GUI programming in

the fi nal two chapters.

 The content and sequence we promote enable students to develop their skills from a solid foundation

of programming fundamentals. To foster this fundamentals-fi rst approach, our book starts with a minimum

set of concepts and details. It then gradually broadens concepts and adds detail later. We avoid overloading

early chapters by deferring certain less-important details to later chapters.

 GUI Track
 Many programmers fi nd GUI programming to be fun. As such, GUI programming can be a great motiva-

tional tool for keeping readers interested and engaged. That’s why we include graphics sections throughout

 Preface xvii

dea7606X_fm_i-xxxviii.indd xviidea7606X_fm_i-xxxviii.indd xvii 13/12/12 11:43 AM13/12/12 11:43 AM

the book, starting in Chapter 1. We call those sections our “GUI track.” For readers who do not have time

for the GUI track, no problem. Any or all of the GUI track sections may be skipped as they cover material

that is independent of later material.

 Chapter 1
 In Chapter 1, we fi rst explain basic computer terms—what are the hardware components, what is source

code, what is object code, and so on. We then narrow our focus and describe the programming language

we’ll be using for the remainder of the book—Java. Finally, we give students a quick view of the classic

bare-bones “Hello World” program. We explain how to create and run the program using minimalist software—

Microsoft’s Notepad text editor and Oracle’s command-line JDK tools.

 Chapter 2
 In Chapter 2, we present problem-solving techniques with an emphasis on algorithmic design. In implement-

ing algorithm solutions, we use generic tools—fl owcharts and pseudocode—with pseudocode given greater

weight. As part of our algorithm-design explanation, we describe structured programming techniques. In

order to give students an appreciation for semantic details, we show how to trace algorithms.

 Chapters 3–5
 We present structured programming techniques using Java in Chapters 3–5. Chapter 3 describes sequential

programming basics—variables, input/output, assignment statements, and simple method calls. Chapter 4

describes non-sequential program fl ow— if statements, switch statements, and loops. In Chapter 5, we

explain methods in more detail and show readers how to use prebuilt methods in the Java API library. In all

three chapters, we teach algorithm design by solving problems and writing programs with the newly intro-

duced Java syntax.

 Interlude
 This “mini-chapter” contains a program that shows how to write multiple methods without using OOP. The

Interlude presents a fork in the road between two study sequences. For the standard study sequence, read the

chapters in the standard order (Chapters 1 through 18). For the “objects later” study sequence, after reading

Chapter 5, read the supplemental chapters S6 and S9 on the book’s website before returning to Chapter 6,

where you’ll begin your study of OOP in earnest.

 Chapters 6–7
 Chapter 6 introduces the basic elements of OOP in Java. This includes implementing classes and implement-

ing methods and variables within those classes. We use UML class diagrams and object-oriented tracing

techniques to illustrate these concepts.

 Chapter 7 provides additional OOP details. It explains how reference variables are assigned, tested for

equality, and passed as arguments to a method. It explains overloaded methods and constructors. It also ex-

plains the use of class variables and methods and named constants.

 Chapter 8
 While the art of program design and the science of computerized problem-solving are developed throughout

the textbook, in Chapter 8, we focus on these aspects in the context of OOP. This chapter begins with an

organized treatment of programming style. It introduces javadoc, the Java application that automatically

xviii Preface

dea7606X_fm_i-xxxviii.indd xviiidea7606X_fm_i-xxxviii.indd xviii 13/12/12 11:43 AM13/12/12 11:43 AM

generates documentation for user-programmers. It describes ways to communicate with users who are not

programmers. It describes organizational strategies like separation of concerns, modularization, encapsula-

tion, and provision of general-purpose utilities. Coded examples show how to implement these strategies.

It describes the major programming paradigms—top-down design, bottom-up design, using pre-written

software for low-level modules, and prototyping.

 Chapters 9–10
 Chapter 9 describes arrays, including arrays of primitives, arrays of objects, and multidimensional arrays.

It illustrates array use with complete programs that sort, search, and construct histograms. Chapter 10 de-

scribes Java’s powerful array alternative, ArrayList. This provides a simple example of generic-element

specifi cation. It also introduces the Java Collections Framework, which in turn, provides natural illustrations

of Java interfaces. The prewritten classes in the Java Collections Framework provide a simple introduction

of sets, maps, and queues. A relatively short but complete program shows how the pre-written Java imple-

mentations of these data structures can be used to create and traverse a multiconnected random network.

 Chapter 11
 Chapter 11 describes the other way to process a collection of data—recursion. This chapter includes a

discussion of various recursive strategies. It introduces recursion with a real-life example and a familiar

problem that one can solve easily with either looping or recursion. Then it moves gradually to problems that

are harder to solve with looping and more easily solved with recursion. Although this chapter appears after

the chapter on ArrayLists and the Java Collections Framework, it does not depend on these concepts—it

uses just ordinary arrays.

 Chapter 12
 Early on, students need to be immersed in problem-solving activities. Covering too much syntax detail early

can detract from that objective. Thus, we initially gloss over some less-important syntax details and come

back to those details later in Chapter 12. This chapter provides more details on items such as these:

 • the byte and short primitive types

 • the Unicode character set

 • type promotions

 • postfi x versus prefi x modes for the increment and decrement operators

 • the conditional operator

 • short-circuit evaluation

 • the enum data type

 The chapter ends with a friendly introduction to a relatively large public-domain program called GridWorld,

which the College Board used for many years as part of its recommended course of study for advanced

placement in computer science. This gives students a glimpse of how larger programs are organized.

 Chapters 13–14
 We describe class relationships in Chapters 13 and 14. We spend two full chapters on class relationships be-

cause the subject matter is so important. We take the time to explain class relationship details in depth and

provide numerous examples. Chapter 13 describes aggregation, composition, and inheritance. Chapter 14

describes more advanced inheritance-related details such as the Object class, polymorphism, abstract

 Preface xix

dea7606X_fm_i-xxxviii.indd xixdea7606X_fm_i-xxxviii.indd xix 13/12/12 11:43 AM13/12/12 11:43 AM

classes, and the fi ner points of interfaces. A section at the end of Chapter 13 extends our discussion of the

GridWorld program. And numerous exercises in these two chapters relate chapter material to corresponding

GridWorld features.

 Chapters 15–16
 We cover exception handling in Chapter 15 and fi les in Chapter 16. We present exception handling be-

fore fi les because fi le-handling code utilizes exception handling; for example, opening a fi le requires that

you check for an exception. Our treatment of exception handling includes multiple-catch parameters and

try-with-resources. In addition to simple text I/O, our treatment of fi les includes buffering, random access,

channeling, and memory mapping.

 Chapters 17–18
 We describe event-driven GUI programming at the end of the book in Chapters 17 and 18. By learning

event-driven GUI programming late, students are better able to grasp its inherent complexities.

 Chapters S17–S18
 Chapters 17 and 18 present GUI concepts using the Swing toolkit because Swing is very popular and will

remain so for years to come. However, with the advent of Java 8, Oracle started supporting JavaFX as the

default GUI toolkit. In Chapters S17 and S18 (the S ’s stands for supplemental), we present GUI concepts us-

ing the JavaFX toolkit.

 Appendices
 Most of the appendices cover reference material, such as the ASCII character set and the operator prece-

dence table. But the last two appendices introduce advanced Java material—multithreading and closures.

 Subject-Matter Dependencies and
Sequence-Changing Opportunities

 We’ve positioned the textbook’s material in a natural order for someone who wants fundamentals and also

wants an early introduction to OOP. We feel that our order is the most effi cient and effective one for learning

how to become a profi cient OOP programmer. Nonetheless, we realize that different readers have different

content-ordering preferences. To accommodate those different preferences, we’ve provided some built-in fl ex-

ibility. Figure 0.1 illustrates that fl exibility by showing chapter dependencies and, more importantly, chapter

non-dependencies. For example, the arrow between Chapter 3 and Chapter 4 means that Chapter 3 must be

read prior to Chapter 4. Because there are no arrows going out of Chapters 1, 11, and 16 that point to other com-

plete chapters, you may skip those chapters without losing prerequisite material that later chapters need. We

use rectangles with rounded corners to indicate chapter sections that you may want to read in advance. If you

choose that option, you’ll want to return to the normal chapter sequence after completing the advanced sections.

 Here are some sequence-changing opportunities revealed by Figure 0.1 :

 • Readers can skip Chapter 1, “Introduction to Computers and Programming.”

 • For an earlier introduction to OOP, readers can read the OOP overview section in Chapter 6 after read-

ing Chapter 1.

 • They can learn OOP syntax and semantics in Chapter 6 after fi nishing Java basics in Chapter 3.

xx Preface

dea7606X_fm_i-xxxviii.indd xxdea7606X_fm_i-xxxviii.indd xx 13/12/12 11:43 AM13/12/12 11:43 AM

Ch 5: Using Pre-built Methods

Ch 1: Introduction

Ch 2: Algorithms and Design

Ch 3: Java Basics

Ch 4: Control Statements

§6.2 OOP
Overview

§6.1−§6.8 OOP
Basics

§12.6−§12.12Alternate
Coding Mechanisms§9.1−§9.6 Arrays

§12.1−§12.5 Type
Details

Interlude

Ch 8: Software Engineering

Ch 6: Object-Oriented Programming

Ch 7: OOP−Additional Details

§11.1−§11.5 Non-
Array Recursion

§9.1−§9.6 Array Basics

Chapter S6: Writing
Methods in a Non-Object-

Oriented Environment

Chapter S9: Arrays in a
Non-Object-Oriented

Environment

Ch 9: Arrays

Ch 10: ArrayList and
Introduction to Java Collections

Framework

Ch 12: Type Details and Alternate
Coding Mechanisms

Ch 11: Recursion

Ch 13: Aggregation, Composition
and Inheritance

Ch 16: Files

Ch 14: Inheritance and
Polymorphism

Ch 15: Exception
Handling

Ch S17: JavaFX GUI
Programming Basics

Ch 17: GUI Programming Basics

Ch 18: GUI Programming—
Component Layout,

Additional GUI Components

Ch S18: JavaFX GUI
Programming—

Additional Details

 Figure 0.1 Chapter dependencies

 Preface xxi

dea7606X_fm_i-xxxviii.indd xxidea7606X_fm_i-xxxviii.indd xxi 13/12/12 11:43 AM13/12/12 11:43 AM

 • For additional looping practice, readers can learn about arrays in Chapter 9 after fi nishing loops in

Chapter 4.

 • Readers can skip Chapter 11, “Recursion,” and Chapter 16, “Files.”

 • Readers who prefer a late objects approach can postpone reading Chapter 6, “Object-Oriented Pro-

gramming,” by fi rst reading Chapter S6, “Writing Methods in a Non-Object-Oriented Environment,”

Sections 9.1–9.6, “Array Basics,” and Chapter S9, “Arrays in a Non-Object-Oriented Environment.”

 • For GUI programming, readers who prefer the Swing toolkit should read Chapters 17 and 18, whereas

readers who prefer the JavaFX toolkit should read Chapters S17 and S18.

 To support content-ordering fl exibility, the book contains “hyperlinks.” A hyperlink is an optional jump

forward from one place in the book to another place. The jumps are legal in terms of prerequisite knowl-

edge, meaning that the jumped-over (skipped) material is unnecessary for an understanding of the later

material. We supply hyperlinks for each of the non-sequential arrows in Figure 0.1 . For example, we supply

hyperlinks that go from Chapter 1 to Chapter 6 and from Chapter 3 to Chapter 12. For each hyperlink tail

end (in the earlier chapter), we tell the reader where they may optionally jump to. For each hyperlink target

end (in the later chapter), we provide an icon at the side of the target text that helps readers fi nd the place

where they are to begin reading.

 Pedagogy

 Icons
 Program elegance.

 Indicates that the associated text deals with a program’s coding style, readability, maintainability,

robustness, and scalability. Those qualities comprise a program’s elegance.

 Problem solving.

 Indicates that the associated text deals with problem-solving issues. Comments associated with

icon attempt to generalize highlighted material in the adjacent text.

 Common errors.

 Indicates that the associated text deals with common errors.

 Hyperlink target.

 Indicates the target end of a hyperlink.

 Program effi ciency.

 Indicates that the associated text refers to program-effi ciency issues.

 Student Resources

 At the textbook website, http://www.mhhe.com/dean2e, students (and also teachers) can view and download

these resources:

 • Links to compiler software—for Oracle’s JDK, Helios’s TextPad, Eclipse, NetBeans, and BlueJ

 • TextPad tutorial

xxii Preface

dea7606X_fm_i-xxxviii.indd xxiidea7606X_fm_i-xxxviii.indd xxii 20/12/12 5:07 PM20/12/12 5:07 PM

 • Eclipse tutorials

 • Textbook errata

 • Student-version Microsoft PowerPoint lecture slides without hidden notes

 The student-version slides are identical to the teacher-version slides except that the hidden notes, hid-

den slides, and quizzes are omitted.

 Omitting the hidden notes forces the students to go to lecture to hear the sage on the stage fi ll in the

blanks.

 • GridWorld code

 • Project assignments

 • All textbook example programs and associated resource fi les

 • Supplemental chapters

 • Supplemental appendices

 Instructor Resources

 At the textbook website, http://www.mhhe.com/dean2e, instructors can view and download these resources:

 • Teacher-version PowerPoint lecture slides with hidden notes

 Hidden notes provide comments that supplement the displayed text in the lecture slides.

 For example, if the displayed text asks a question, the hidden notes provide the answer.

 • Exercise solutions

 • Project solutions

 • Test bank materials

 Acknowledgments

 Anyone who has written a textbook can attest to what a large and well-orchestrated team effort it requires.

Such a book can never be the work of only one person, or even a few people. We are deeply indebted to the

team at McGraw-Hill Higher Education who have shown continued faith in our writing and invested gener-

ously in it.

 It was a pleasure to work with Alan Apt during the original book’s two-year review period. He provided

excellent guidance on several large design issues. Helping us through the various stages of this edition’s pro-

duction was Project Manager Melissa Leick. We would also like to thank the rest of the editorial and mar-

keting team, who helped in the fi nal stages: Raghu Srinivasan, Publisher; Katie Neubauer, Developmental

Editor; and Curt Reynolds, Marketing Manager.

 All the professionals we have encountered throughout the McGraw-Hill organization have been won-

derful to work with, and we sincerely appreciate their efforts.

 We would like to acknowledge with appreciation the numerous and valuable comments, suggestions,

and constructive criticisms and praise from the many instructors who have reviewed the book. In particular,

 Robert Burton, Brigham Young University

 William Duncan , Louisiana State University

 Frantisek Franek, McMaster University

 Junilda Spirollari, New Jersey Institute of Technology

 Preface xxiii

dea7606X_fm_i-xxxviii.indd xxiiidea7606X_fm_i-xxxviii.indd xxiii 20/12/12 5:07 PM20/12/12 5:07 PM

 Geoffrey Decker, Northern Illinois University

 Patricia Roth Pierce , Southern Polytechnic State University

 Jeffrey A. Meunier, University of Connecticut

 Chris Johnson , University of Wisconsin, Eau Claire

 Mark Pauley, University of Nebraska at Omaha

 Christopher Taylor, Milwaukee School of Engineering

 We would also like to thank Park University colleagues Guillermo Tonsmann and Ken Dewey for their

help over the past several years, making suggestions for improvements to the fi rst edition. We appreciate

Daniel Green from the Oracle Corporation, who provided advice about new developments in the JavaFX

platform and in the Java language itself. A special shout-out goes to Judy Hromcik, a former member of the

Advanced Placement (AP) Computer Science Development Committee. In reviewing the second edition, she

provided many helpful suggestions, with an eye towards making the book work well in both a college setting

and also in an AP Computer Science high school setting.

 Thanks to Bruce Jenkins, who worked on the JavaFX chapters. Thanks to Rafael Neri and Miki Katu-

wal, who created the “Woman seen yesterday” recursive picture in Chapter 11. Finally, thanks to the students

who provided feedback and searched diligently for mistakes in order to earn bonus points on their home-

work. In particular, thank you Komi Labitoko, Nodirbek Hojimatov, Lance Delaney, Ryan Todd, Rob Liebsch,

Nirendra Shakya, and Anna Luo.

 Sincerely,

 John and Ray

xxiv Preface

dea7606X_fm_i-xxxviii.indd xxivdea7606X_fm_i-xxxviii.indd xxiv 13/12/12 11:43 AM13/12/12 11:43 AM

xxv

 One of the special features of this text is the diversity of its projects. Project subject matter spans six broad

academic areas, as this short table shows:

 Abbreviation Description Easy Moderate Diffi cult Total

 CS computer science and numerical methods 15 14 6 35

 Business business and accounting 11 12 3 26

 Sociology social sciences and statistics 6 8 5 19

 Math & Phys math and physics 10 6 3 19

 Engineering engineering and architecture 2 8 6 16

 Biol & Ecol biology and ecology 0 3 4 7

 Totals 44 51 27 122

 The abbreviation in the fi rst column above will be used in a larger table below as a brief identifi cation

of a particular academic area. The four right-side columns in the above table indicate the number of projects

in various categories. Of course, the highest number of projects (35) occurs in the area of computer science

and numerical methods. The 29 easy and moderate CS projects are typical CS introductory programming

problems. The 6 diffi cult CS projects provide gentle introductions to some advanced topics like linked list

operations, database operations, and simulated annealing.

 In addition, there are 26 projects in business and accounting, which include miscellaneous fi nancial cal-

culations, simple bookkeeping problems, and cost-accounting applications. There are 19 projects in social sci-

ences and statistics, which include applications in sociology and political science, as well as general experience.

There are 19 projects in math and physics, which include applications in both classical and chaotic mechanics.

There are 16 projects in engineering and architecture, which include applications in heating ventilating and air

conditioning (HVAC), electrical engineering, and civil engineering. Finally, there are 7 projects in biology and

ecology, which include realistic growth and predator-prey simulations. Although we’ve associated each project

with one primary academic area, many of these projects can fi t into other academic areas as well.

 Because many of these projects apply to disciplines outside the fi eld of computer science, we do not

expect that the average reader will already know about all of these “other” topics. Therefore, in our problem

statements, we usually take considerable time to explain the topic as well as the problem. And we often

explain how to go about solving the problem—in layman’s terms. Therefore, working many of these proj-

ects will be like implementing computer solutions for customers who are not programmers themselves but

understand their subject matter and know what they want you (the programmer) to do for them. They will

explain their problem and how to go about solving it. But then they will expect you to create the program

that actually solves that problem.

 Because our project explanations frequently take considerable printed space, instead of putting them in

the book itself, we put them on our website:

 http://www.mhhe.com/dean

 The following table provides a summary of the projects on the book’s website. This table lists all of the

book’s projects in a sequence that matches the book’s sequence. The fi rst column identifi es the fi rst point

 Project Summary

dea7606X_fm_i-xxxviii.indd xxvdea7606X_fm_i-xxxviii.indd xxv 13/12/12 11:43 AM13/12/12 11:43 AM

xxvi Project Summary

at which you should be able to do the project, by chapter and section, in the form: ChapterNumber.Section-

Number. The second column is a unique project number for the chapter in question. The third column iden-

tifi es the project’s primary academic area with an abbreviation that’s explained in the shorter table above.

The fourth column indicates the approximate number of pages of code that our solution contains. The fi fth

column indicates the diffi culty relative to where you are in your study of Java. For example, you can see that

what we call “easy” involves progressively more pages of code as you progress through the book. The last

two columns provide a title and brief description of each project.

 Project Summary

 Ch./Sec Proj.
 Academic

Area
 Sol.

Pages Diffi culty Title Brief Description

 2.7 1 Business 0.6 Easy Annual Bonus–

(Flowchart)

 Draw a fl owchart for an algorithm that

computes an annual bonus.

 2.7 2 Business 0.3 Easy Annual Bonus—

(Pseudocode)

 Write pseudocode for an algorithm that

computes an annual bonus.

 2.7 3 Business 0.6 Easy Number of

Stamps—

(Flowchart)

 Draw a fl owchart for an algorithm that

calculates the number of stamps needed

for an envelope. Use one stamp for every

fi ve sheets of paper.

 2.7 4 Business 0.3 Easy Number of

Stamps—

(Pseudocode)

 Write pseudocode for an algorithm that

calculates the number of stamps needed

for an envelope. Use one stamp for every

fi ve sheets of paper.

 2.7 5 Biol & Ecol 0.5 Moderate Five Kingdoms—

(Pseudocode)

 Write pseudocode for an algorithm that

identifi es a biological kingdom from a

set of characteristics.

 2.7 6 Math &

Phys

 0.6 Easy Speed of Sound—

(Flowchart)

 Draw a fl owchart for an algorithm

that provides the speed of sound in a

particular medium.

 2.7 7 Math &

Phys

 0.4 Easy Speed of Sound—

(Pseudocode)

 Write pseudocode for an algorithm

that provides the speed of sound in a

particular medium.

 2.7 8 Business 0.6 Moderate Stock Market

Return—

(Flowchart)

 Draw a fl owchart for an algorithm that

prints the type of market and its probability

given a particular rate of return.

 2.7 9 Business 0.4 Moderate Stock Market

Return—

(Pseudocode)

 Write pseudocode for an algorithm that

prints the type of market and its probability

given a particular rate of return.

 2.8 10 Business 0.3 Moderate Bank Balance—

(Pseudocode)

 Write pseudocode for an algorithm

that determines the number of years

until a growing bank balance reaches a

million dollars.

 2.9 11 Engineering 1.0 Moderate Loop Termination

by User Query—

(Flowchart)

 Draw a fl owchart for an algorithm that

calculates the overall miles per gallon

for a series of miles and gallons user

inputs.

dea7606X_fm_i-xxxviii.indd xxvidea7606X_fm_i-xxxviii.indd xxvi 13/12/12 11:43 AM13/12/12 11:43 AM

 Project Summary xxvii

 Ch./Sec Proj.
 Academic

Area
 Sol.

Pages Diffi culty Title Brief Description
 2.9 12 Engineering 0.5 Easy Loop Termination

by User Query—

(Pseudocode)

 Write pseudocode for an algorithm that

calculates the overall miles per gallon

for a series of miles and gallons user

inputs.

 2.9 13 Engineering 0.4 Moderate Loop Termination

by Sentinal

Value—

(Pseudocode)

 Write pseudocode for an algorithm that

calculates the overall miles per gallon

for a series of miles and gallons user

inputs.

 2.9 14 Engineering 0.3 Easy Loop Termination

by Counter—

(Pseudocode)

 Write pseudocode for an algorithm that

calculates the overall miles per gallon

for a series of miles and gallons user

inputs.

 2.10 15 CS 0.4 Moderate Average Weight—

(Pseudocode)

 Write pseudocode for an algorithm that

determines average weight for a group

of items.

 3.2 1 CS NA Easy Hello World

Experimentation

 Experiment with the Hello.java
program to learn the meanings of

typical compile-time and runtime error

messages.

 3.3 2 CS NA Moderate Research Study Oracle’s Java Coding

Conventions.

 3.3 3 CS NA Moderate Research Study Appendix 5, “Java Coding-Style

Conventions.”

 3.16

3.23

 4 Engineering 2.5 Diffi cult Truss Analysis Given the load in the center of a bridge

and the weights of all truss members,

compute the compression or tension

force in each truss member.

 3.17 5 CS 1.0 Easy Sequence of

Commands

 Trace a sequence of commands and

write a program that executes those

commands.

 3.17

3.23

 6 CS 1.7 Moderate Computer Speed Given a simple set of hardware and

software characteristics, write a program

that estimates the total time to run a

computer program.

 3.17

3.23

 7 Engineering 2.7 Moderate HVAC Load Calculate the heating and cooling loads

for a typical residence.

 3.17

3.23

 8 Sociology 3.5 Diffi cult Campaign

Planning

 Write a program to help organize

estimates of votes, money, and labor.

 3.22 9 CS 1.0 Easy String Processing Trace a set of string processing

operations and write a program that

implements them.

 3.23 10 CS 1.2 Easy Swapping Trace an algorithm that swaps the values

in two variables, and write a program

that implements that algorithm.

(continued)

 Project Summary

dea7606X_fm_i-xxxviii.indd xxviidea7606X_fm_i-xxxviii.indd xxvii 13/12/12 11:43 AM13/12/12 11:43 AM

xxviii Project Summary

 Ch./Sec Proj.
 Academic

Area
 Sol.

Pages Diffi culty Title Brief Description

 3.23 11 Math &

Phys

 1.0 Easy Circle Parameters Write a program that generates and

prints circle-related values.

 3.23 12 Sociology 0.4 Easy One-Hundredth

Birthday

 Write a program that prompts the user

for his/her birthday month, day, and year

and prints the date of the user’s one-

hundredth birthday.

 4.3 1 Math &

Phys

 1.7 Easy Stopping Distance Write a program which determines

whether a vehicle’s tailgating distance

is safe, given the speed of the vehicle,

the vehicle’s tailgating distance, and a

formula that gives the distance required

to stop the vehicle.

 4.3

 4.8

 2 Engineering 1.9 Moderate Column Safety Write a program that determines whether

a structural column is thick enough to

support the column’s expected load.

 4.3 3 Business 1.1 Easy Economic Policy Write a program that reads in growth

rate and infl ation values and outputs a

recommended economic policy.

 4.8 4 Business 2.0 Moderate Bank Balance Write a program that determines the

number of years until a growing bank

balance reaches a million dollars.

 4.9

 4.12

 5 CS 2.6 Diffi cult Game of NIM Implement the game of NIM. Start the

game with a user-specifi ed number

of stones in a pile. The user and the

computer take turns removing either one

or two stones from the pile. The player

who takes the last stone loses.

 4.12 6 Math &

Phys

 1.0 Easy Triangle Write a program that generates an

isosceles triangle made of asterisks,

given user input for triangle size.

 4.12 7 Sociology 0.8 Easy Mayan Calendar Implement an algorithm that determines

the number of Tzolkins and the number

of Haabs in one Calendar Round.

 4.12 8 CS 0.9 Easy Input Validation Implement an algorithm that repeatedly

prompts for inputs until they fall within

an acceptable range and computes the

average of valid inputs.

 4.14 9 Business 2.6 Moderate Tax Preparation Write a program that calculates customers’

income taxes using the following rules:

• The amount of taxes owed equals the

taxable income times the tax rate.

• Taxable income equals gross income

minus $1,000 for each exemption.

 • The taxable income cannot be less

than zero.

 Project Summary

dea7606X_fm_i-xxxviii.indd xxviiidea7606X_fm_i-xxxviii.indd xxviii 13/12/12 11:43 AM13/12/12 11:43 AM

 Project Summary xxix

 Ch./Sec Proj.
 Academic

Area
 Sol.

Pages Diffi culty Title Brief Description
 4.14 10 CS 1.7 Moderate Text Parsing Write a program that converts words to

pig Latin.

 5.3 1 Math &

Phys

 1.2 Easy Trigonometric

Functions

 Write a demonstration program that asks

the user to select one of three possible

inverse functions, arcsin, arccos, or

arctan, and input a trigonometric ratio. It

should generate appropriate output, with

diagnostics.

 5.3 2 Math &

Phys

 0.7 Easy Combining

Decibels

 Determine the acoustical power level

produced by the combination of two

sound sources.

 5.3 3 Business 1.0 Moderate Net Present Value

Calculation

 Write a program that computes the net

present value of a proposed investment,

given a discount rate and an arbitrary set

of future cash fl ows.

 5.5 4 CS 1.5 Moderate Variable Name

Checker

 Write a program that checks the

correctness of a user-entered variable

name, i.e., whether it is: (1) illegal,

(2) legal, but poor style, or (3) good

style. Assume that “good style” variable

names use letters and digits only,

and use a lowercase letter for the fi rst

character.

 5.6 5 CS 1.0 Moderate Phone Number

Dissector

 Implement a program that reads phone

numbers, and for each phone number,

it displays the phone number’s three

components—country code, area code,

and local number.

 5.6 6 CS 1.1 Diffi cult Phone Number

Dissector—robust

version

 Implement a more robust version of

the above phone number program.

Allow for shortened phone numbers—

phone numbers that have just a local

digit group and nothing else, and

phone numbers that have just a local

digit group and an area code and

nothing else.

 6.4 1 Biol & Ecol 1.5 Moderate Plant Germination

Observation

 Write a program that (1) creates

an object called tree from the

MapleTree class; (2) calls a plant
method to record the planting of the seed;

(3) calls a germinate method to

record the fi rst observation of a seedling

and record its height; and (4) calls a

dumpData method to display the

current values of all instance variables.

 Project Summary

(continued)

dea7606X_fm_i-xxxviii.indd xxixdea7606X_fm_i-xxxviii.indd xxix 13/12/12 11:43 AM13/12/12 11:43 AM

xxx Project Summary

 Ch./Sec Proj.
 Academic

Area
 Sol.

Pages Diffi culty Title Brief Description
 6.4 2 Business 0.5 Easy Bank Account Given the code for a BankAccount

class, provide a driver that tests that

class by instantiating an object and

calling its methods— setCustomer ,
 setAccountNum , and

 printAccountInfo .

 6.8 3 Math &

Phys

 1.5 Moderate Logistic Equation Exercise the logistic equation:

nextX � presentX � r � presentX �

(1 � presentX), where presentX �

(present x)/(maximum x), and r is a

growth factor.

 6.9 4 Math &

Phys

 0.9 Easy Circle Given the code for a CircleDriver
class, write a Circle class that

defi nes a radius instance variable,

a setRadius method, and a

 printAndCalculateCircleData

method that uses the circle’s radius to

calculate and print the circle’s diameter,

circumference, and area.

 6.10 5 Engineering 2.0 Moderate Digital Filter Given a formula for a “Chebyshev

second-order low-pass” fi lter or a

“Butterworth second-order low-pass”

fi lter, with appropriate parameter values,

write a program that asks the user to

supply a sequence of raw input values

and generates the corresponding fi ltered

output.

 6.10 6 Sociology 3.1 Diffi cult Vending Machine Write a program that mimics the

operations of a vending machine. The

program should read amounts of money

inserted into the vending machine, ask

the user to select an item, and then print

the change that’s returned to the user.

 6.12 7 Math &

Phys

 1.1 Easy Rectangle Implement a Rectangle class that

defi nes a rectangle with length and

width instance variables, mutator and

accessor methods, and a boolean
isSquare method.

 6.12 8 Biol & Ecol 4.0 Diffi cult Predator-Prey

Dynamics

 Write a program that models a species

that could be either predator or prey or

both. Run a simulation that includes

predators, prey, and limited renewable

sustenance for the prey.

 6.13 9 Math &

Phys

 2.1 Moderate Guitar Mechanics Write a program that simulates the

motion of a plucked guitar string.

 Project Summary

dea7606X_fm_i-xxxviii.indd xxxdea7606X_fm_i-xxxviii.indd xxx 13/12/12 11:43 AM13/12/12 11:43 AM

 Project Summary xxxi

 Ch./Sec Proj.
 Academic

Area
 Sol.

Pages Diffi culty Title Brief Description

 7.5

 7.9

 1 CS 3.5 Diffi cult Linked List Given the code for a driver, implement a

Recipe class that creates and maintains

a linked list of recipes.

The problem assignment specifi es all

instance variables and methods in UML

class diagrams.

 7.7 2 CS 2.5 Easy Automobile

Description

 Use method-call chaining to help display

properties of automobiles.

 7.7

 7.9

 3 Biol & Ecol 4.6 Diffi cult Carbon Cycle Given the code for a driver, write a pair

of classes for a program that models

the carbon cycle in an ecosystem.

Use two generic classes. One class,

Entity, defi nes things. The other class,

Relationship, defi nes interactions.

 7.8 4 CS 1.4 Easy IP Address Implement an IpAddress class that

stores an Internet Protocol (IP) address

as a dotted-decimal string and as four

octet ints.

 7.9 5 Math &

Phys

 4.5 Moderate Fraction Handler Given the main method of a driver

class, write a Fraction class. Include

the following instance methods: add,

multiply, print, printAsDouble,

and a separate accessor method for each

instance variable.

 7.10 6 Math &

Phys

 1.1 Easy Rectangles Write a class that processes rectangular

objects. Include a variable that holds the

total number of objects and a method

that gets that number.

 7.11 7 Sociology 2.7 Easy Person Class Defi ne a class that simulates the creation

and display of Person objects.

 7.12 8 Sociology 2.7 Moderate Homework Scores Write a program that handles homework

scores. Use instance variables for actual

and maximum points on a particular

homework, and use class variables for

actual total and maximum total points of

all homeworks combined.

 7.11 9 Sociology 3.9 Diffi cult Political Approval

Rating

 Write a program that determines

the mean and standard deviation of

statistical samples.

 7.12 10 Engineering 5.7 Diffi cult Solar Input for

HVAC and Solar

Collectors

 Write a program that tracks the sun

and determines how much solar energy

penetrates a glass window of any

orientation, at any place and time.

 Project Summary

(continued)

dea7606X_fm_i-xxxviii.indd xxxidea7606X_fm_i-xxxviii.indd xxxi 13/12/12 11:43 AM13/12/12 11:43 AM

xxxii Project Summary

 Ch./Sec Proj.
 Academic

Area
 Sol.

Pages Diffi culty Title Brief Description

 7.13 11 Engineering 2.8 Moderate Electric Circuit Write branch and node classes for

lumped-circuit elements. A branch

carries current through a resistor in

series with an inductor. A node holds

voltage on a capacitor connected to

a common ground. Driver code is

provided in the problem assignment.

 7.13 12 Business 5.1 Diffi cult Cost Accounting Write an object-oriented program that

demonstrates cost accounting in a

manufacturing plant.

 7.13 13 Sociology 6.4 Diffi cult Political Campaign Write a program to help organize

estimates of votes, money, and labor.

This is an object-oriented version of

Project 8 in Chapter 3.

 7.13 14 Business 2.7 Moderate Net Present Value

Calculation

 Write a program that computes the net

present value of a proposed investment,

given a discount rate and an arbitrary

set of future cash fl ows. This is an OOP

version of Project 3 in Chapter 5.

 7.13 15 Math &

Phys

 7.0 Diffi cult Three-Body

Problem

 Write a program to model the three-

body problem in which two equally

sized moons circle the Earth in different

orbits. This illustrates chaotic dynamic

motion.

 8.5 1 CS 1.6 Easy Input Validation Implement an algorithm that repeatedly

prompts for inputs until they fall within

an acceptable range and computes

the average of valid inputs. This is an

object-oriented version of Project 8 in

Chapter 4.

 8.5 2 Engineering 4.0 Diffi cult HVAC Load Calculate the heating and cooling loads

for a typical residence. This is an object-

oriented version of Project 7 in Chapter 3.

 8.8 3 Sociology 2.6 Moderate Elevator Control Write a program that mimics the

operations of the inside of an elevator.

The program should simulate what

happens when the user chooses to go to

a particular fl oor and when the user pulls

the fi re alarm.

 8.11 4 CS 2.0 Easy Prototype

Restructuring

 Consider the NestedLoopRectangle

program in Figure 4.17 in Section 4.12

to be a prototype. Using top-down

methodology, restructure it into OOP

format.

 Project Summary

dea7606X_fm_i-xxxviii.indd xxxiidea7606X_fm_i-xxxviii.indd xxxii 13/12/12 11:43 AM13/12/12 11:43 AM

 Project Summary xxxiii

 Ch./Sec Proj.
 Academic

Area
 Sol.

Pages Diffi culty Title Brief Description

 9.4 1 Biol & Ecol 5.0 Diffi cult Demographic

Projections

 Write a program that projects future

world population and average individual

wealth as a function of fertility rates and

resource extraction rates, and includes

the effects of governmental taxation and

spending.

 9.6 2 CS 3.3 Moderate Dice-Throwing

Simulator

 Write a program that simulates the

rolling of a pair of dice and prints a

histogram showing the frequencies of

possible results.

 9.6 3 CS 5.1 Diffi cult Simulated

Annealing—

the Traveling

Salesman Problem

 Write a program that uses simulated

annealing to fi nd the shortest itinerary

that visits all of the world’s major cities

exactly one time.

 9.7 4 Sociology 2.1 Easy Party Guest List Write a program that creates a Party

object, adds guests to the party, and

prints party information.

 9.9 5 Sociology 2.7 Easy Vowel Counter Write a program that counts the number

of uppercase and lowercase vowels in

user-entered lines of text and prints a

summary report of vowel counts.

 9.9 6 Math &

Phys

 7.6 Diffi cult Solution of

Simultaneous

Algebraic

Equations

 Write a program that loads a set of

simultaneous algebraic equations

into two-dimensional arrays and

solves the equations by Lower-Upper

Decomposition.

 9.9 7 Math &

Phys

 2.5 Moderate Linear Regression Write a program that computes a linear

regression by fi tting a straight line to a

series of random data.

 9.10 8 Business 3.4 Moderate Purchase Vouchers Write a program that creates business

vouchers that record purchases, displays

current voucher information, and records

payments for those purchases.

 10.2 1 Sociology 1.1 Easy Deck of Cards Write a class that uses an ArrayList

 to hold a deck of cards.

 10.4 2 Business 1.9 Easy Bookstore Write a program that models the storing

and retrieving of books based on title.

 10.9 3 Business 0.9 Easy LIFO Inventory Write a program that uses a stack

to model last-in-fi rst-out inventory

costing.

 10.10 4 CS 0.7 Easy Queue Behavior Write a program that illustrates the

behavior of ordinary and priority queues.

 Project Summary

(continued)

dea7606X_fm_i-xxxviii.indd xxxiiidea7606X_fm_i-xxxviii.indd xxxiii 13/12/12 11:43 AM13/12/12 11:43 AM

xxxiv Project Summary

 Ch./Sec Proj.
 Academic

Area
 Sol.

Pages Diffi culty Title Brief Description

 10.10 5 CS 2.1 Moderate Survey with a

two-variable key

 Add hash codes to form the key of a map

that relates a person and an event to an

assessment of that event.

 10.10 6 Engineering 4.8 Diffi cult Discrete Event

Simulation of

Queuing Systems

 Using iterative enhancement, write

code for a discrete-event simulator for:

(1) single-server queue with constant

service time; (2) priority queue with

random service time; (3) multiple servers

and queue length limit.

 11.5 1 Business 1.6 Easy Loan Payments

and Balances

 Write a program that uses recursion to

determine the level payment amount

needed to pay off a loan in a given

number of equal installments. Display

balance after each payment.

 11.5 2 Math &

Phys

 2.0 Moderate Graphical Display

of Hénon Map

 Convert a given GUI applet into a GUI

application. Then modify the application

to zoom in to see the fi ne structure in a

classical fractal. Convert from recursion

to iteration and zoom in more.

 11.6 3 Sociology 2.0 Moderate Traversing a Maze Use recursion to traverse a maze by

following one wall. Modify the program

to back up at dead ends, and modify

again to fi nd an interior object.

 11.9 4 CS 2.0 Moderate Enhanced Tree

Simulation

 Enhance the program in Section 11.9

by adding colored leaves, giving tree

trunks and branches color and varying

thickness, and randomizing branch

lengths and branching angles.

 12.3 1 CS 0.7 Easy ASCII Table Write a program that prints the

128-character ASCII table in eight

tab-separated columns.

 12.7 2 CS 0.8 Easy Circular Queue A given program implements a circular-

array queue. Rewrite the isFull,

remove, and showQueue methods

by replacing conditional operators,

embedded assignments, and embedded

increment operators with simpler, more

understandable code.

 12.7 3 Math &

Phys

 4.1 Moderate Polynomial

Interpolation

 Fit a polynomial to points on either side

of a pair of points in an array of data

and use that to estimate the value at a

position between the pair of points.

 12.9 4 CS 1.4 Moderate Bitwise Operations Use arithmetic and logical shifting to

display the binary values of numbers.

 Project Summary

dea7606X_fm_i-xxxviii.indd xxxivdea7606X_fm_i-xxxviii.indd xxxiv 13/12/12 11:43 AM13/12/12 11:43 AM

 Project Summary xxxv

 Ch./Sec Proj.
 Academic

Area
 Sol.

Pages Diffi culty Title Brief Description

 12.11 5 CS 3.5 Moderate Heap Sort Use the heap-sort algorithm to sort data.

 10.9

 12.14

 6 Biol & Ecol 5.5 Diffi cult Game of Spawn This “game” simulates reproduction and

growth in a rectangular grid of cells.

An X indicates life. A dead cell comes

to life when it has exactly three living

neighbor cells. A living cell remains

alive only when surrounded by two or

three living neighbor cells.

 13.2 1 Business 1.7 Easy Savings Accounts Compute and display savings account

balances that accumulate with

compound interest.

 13.4 2 Math &

Phys

 13.4 Diffi cult Statistics Functions Write a program that generates values

for the Gamma, Incomplete Gamma,

Beta, Incomplete Beta, and Binomial

statistical functions.

 13.5 3 Business 3.3 Easy Car Program Using inheritance, write a program that

keeps track of information about new

and used cars.

 13.10 4 Sociology 16.4 Diffi cult Game of Hearts Write a program that simulates a basic

game of hearts with an arbitrary number

of players. Give all players an identical

set of good strategies that optimize the

chances of winning.

 14.7 1 Business 9.0 Diffi cult Grocery Store

Inventory

 Write an inventory program that keeps

track of various kinds of food items. Use

different methods in an Inventory

class to process heterogeneous objects

representing generic and branded food

items. Store the objects together in a

common ArrayList.

 14.7 2 Engineering 8.7 Diffi cult Electric Circuit

Analysis

 Write a program that calculates the

steady-state currents in a two-loop

electric circuit with resistors, inductors,

capacitors, and voltage sources.

Include methods to perform addition,

subtraction, multiplication, and division

of complex numbers.

 14.8 3 Business 5.4 Moderate Payroll Use polymorphism to write an employee

payroll program that calculates and

prints the weekly payroll for a company

with hourly, salaried, and salaried plus

commission employees, where each type

of employee gets paid using a different

formula. Use an abstract base class.

 Project Summary

(continued)

dea7606X_fm_i-xxxviii.indd xxxvdea7606X_fm_i-xxxviii.indd xxxv 13/12/12 11:43 AM13/12/12 11:43 AM

xxxvi Project Summary

 Ch./Sec Proj.
 Academic

Area
 Sol.

Pages Diffi culty Title Brief Description

 14.8 4 Business 2.9 Moderate Bank Accounts Write a bank account program that

handles bank account balances for an

array of bank accounts. Use two types

of bank accounts, checking and savings,

derived from an abstract class named

BankAccount.

 15.4 1 Sociology 4.0 Moderate Body Mass Index Write a program that prompts the user

for height and weight values and displays

the associated body mass index (BMI).

 15.5 2 CS 6.4 Diffi cult Storage and

Retrieval of

Objects in an

Array

 Search for a match with the key value

in a relational table, using two different

search algorithms, a sequential search,

and a hashed search.

 15.8 3 Biol & Ecol 3.8 Moderate Whale Watching Estimate whale length from observed

fl uke span. Use exceptions to help user

correct input format errors.

 15.9 4 CS 2.5 Moderate Date Formatting Create a class named Date that stores

date values and prints out the date in

either a numeric format or an alphabetic

format.

 15.9 5 CS 5.5 Diffi cult Input Utility Write a utility class that reads and parses

keyboard inputs for the following: String,
char, double, float, long, int.

 16.2 1 Engineering 3.7 Moderate Road Use Survey Model traffi c fl owing on a highway past

a particular place, store observations,

and read fi le later for analysis.

 16.2 2 Business 2.9 Moderate Mail Merge Write a program that reads a form letter

from a text fi le and modifi es custom

fi elds.

 16.4 3 CS 1.5 Easy Appending Data

to an Object File

 Implement code needed to append data

to an object fi le.

 16.2

 16.9

 4 CS 5.0 Moderate File Converter Write a program that changes

whitespace in text fi les.

 17.12 1 Engineering 4.1 Moderate Animated

Garage Door

 Write a program that simulates the

operation of an automatic garage door

and its controls and visually display its

position as it operates.

 17.14 2 Sociology 3.0 Moderate Color

Memorization

 Write a program that tests the user’s

ability to memorize a sequence of colors.

17.14 3 Business 8.7 Diffi cult Grocery Inventory

GUI

Write a GUI version of the Grocery

Store Inventory project in Chapter 14.

17.15 4 Sociology 4.2 Moderate Word Order Game Create a simple interactive game that

helps kids practice their alphabetic skills.

 Project Summary

dea7606X_fm_i-xxxviii.indd xxxvidea7606X_fm_i-xxxviii.indd xxxvi 13/12/12 11:43 AM13/12/12 11:43 AM

 Project Summary xxxvii

 Project Summary

 Ch./Sec Proj.
 Academic

Area
 Sol.

Pages Diffi culty Title Brief Description

17.16 5 Business 3.8 Moderate Airline

Reservations

Write a GUI program that assigns seats

on airline fl ights.

18.3 1 CS 1.7 Easy Changing Color

and Alignment

Write an interactive program that

modifi es the color and position of

buttons in a GUI window.

18.7 2 CS 1.9 Easy Click Tracker Write an interactive program that

modifi es the borders and labels of

buttons in a GUI window.

18.11 3 Sociology 3.4 Moderate Tic-Tac-Toe Create an interactive Tic-Tac-Toe game.

18.11 4 Sociology 4.3 Moderate Word Order Game,

revisited

Modify Chapter 17’s Word Order Game

program so that it uses embedded layout

managers.

18.11 5 Engineering 7.5 Diffi cult Thermal Diffusion

in a Ground-

Source Heat

Pump’s Well

Write a program to compute and display

temperature around a ground-source

heat pump well as a function of distance

from the well center and the time of

year.

dea7606X_fm_i-xxxviii.indd xxxviidea7606X_fm_i-xxxviii.indd xxxvii 13/12/12 11:43 AM13/12/12 11:43 AM

This page intentionally left blank

0.0 Last A-Head 1

Introduction to Computers
and Programming

 Objectives

• Describe the various components that make up a computer.

• List the steps involved in program development.

• Know what it means to write algorithms using pseudocode.

• Know what it means to write programs with programming language code.

• Understand source code, object code, and the compilation process.

• Describe how bytecode makes Java portable.

• Become familiar with Java’s history—why it was initially developed, how it got its name, and so forth.

• Enter, compile, and run a simple Java program.

 Outline

 1.1 Introduction 1

 1.2 Hardware Terminology 2

 1.3 Program Development 10

 1.4 Source Code 12

 1.5 Compiling Source Code into Object Code 13

 1.6 Portability 14

 1.7 Emergence of Java 15

 1.8 Computer Ethics 17

 1.9 First Program—Hello World 18

 1.10 GUI Track: Hello World and Look and Feel (Optional) 22

 1.1 Introduction

 This book is about problem solving. Specifi cally, it is about creating solutions to problems through a set of

precisely stated instructions. We call such a set of instructions (when in a format that can be entered into and

executed on a computer) a program. To understand what a program is, think about the following situation.

1 C H A P T E R

1 1

dea7606X_ch01_001-028.indd 1dea7606X_ch01_001-028.indd 1 14/11/12 7:10 PM14/11/12 7:10 PM

2 Chapter 1 Introduction to Computers and Programming

Suppose you manage a department store, and you don’t know when to restock the shelves because you have

diffi culty keeping track of inventory. The solution to the problem is to write a set of instructions that keeps

track of items as they arrive at your store and as they are purchased. If the instructions are correct and in a

format that is understood by a computer, you can enter the instructions as a program, run the program, and

enter item-arrival and item-purchase data as they occur. You can then retrieve inventory information from

the computer any time you need it. That accurate and easily accessible knowledge enables you to restock

your shelves effectively, and you are more likely to turn a profi t.

 The fi rst step to learning how to write programs is to learn the background concepts. In this chapter, we

teach background concepts. In subsequent chapters, we use these background concepts while explaining the

really good stuff—how to program.

 We start this chapter by describing the various parts of a computer. We then describe the steps involved

in writing a program and in running a program. Next, we narrow our focus and describe the programming

language we’ll be using for the remainder of the book—Java. We present step-by-step instructions on how

to enter and run a real Java program, so that you’ll be able to gain some hands-on experience early on. We

fi nish the chapter with an optional GUI-track section that describes how to enter and run a graphical user

interface (GUI) program.

 1.2 Hardware Terminology

 A computer system is made up of all the components that are necessary for a computer to operate and

the connections between those components. There are two basic categories of components— hardware and

 software. Hardware consists of the physical components associated with a computer. Software consists

of the programs that tell a computer what to do. For now, let’s focus on hardware.

 Our description of a computer’s hardware provides you with the information you’ll need as a beginning

programmer. (A programmer is a person who writes programs.) After you master the material here, if you

decide you want more, go to Webopedia’s hardware web page at http://www.webopedia.com/hardware.

 The Big Picture
 Figure 1.1 shows the basic hardware components in a computer system. It shows input devices at the left (key-

board, mouse, and scanner), output devices at the right (monitor and printer), storage devices at the bottom, and

the central processing unit (CPU) and main memory in the center. The arrows in Figure 1.1 represent connec-

tions between the components. For example, the arrow from the keyboard to the CPU-main memory repre-

sents a cable (a connecting wire) that transmits information from the keyboard to the CPU and main memory.

Throughout this section, we explain the CPU, main memory, and all the devices in Figure 1.1 .

 Input and Output Devices
 Input and output devices are collectively called I/O devices. There are different defi nitions of an input device, but

usually the term refers to a device that transfers information into a computer. Remember—information going

into a computer is input. For example, a keyboard is an input device because when a person presses a key,

the keyboard sends information into the computer (it tells the computer which key was pressed).

 There are different defi nitions of an output device, but usually the term refers to a device that transfers

information out of a computer. Remember—information going out of a computer is output. For example, a

 monitor (also called a display or a screen) is an output device because it displays information going out of

the computer.

dea7606X_ch01_001-028.indd 2dea7606X_ch01_001-028.indd 2 14/11/12 7:10 PM14/11/12 7:10 PM

 1.2 Hardware Terminology 3

 Central Processing Unit
 The central processing unit, often referred to as the processor or microprocessor, can be considered the

computer’s brain. As with a biological brain, the CPU splits its time between two basic activities— thinking

and managing the rest of its system. The “thinking” activities occur when the CPU reads a program’s in-

structions and executes them. The “managing its system” activities occur when the CPU transfers informa-

tion to and from the computer system’s other devices.

 Here’s an example of a CPU’s thinking activities. Suppose you have a program that keeps track of a sat-

ellite’s position in its orbit around the Earth. Such a program contains quite a few mathematical calculations.

The CPU performs those mathematical calculations.

 Here’s an example of a CPU’s managing-its-system activities. Suppose you have a job application pro-

gram. The program displays boxes in which a person enters his/her name, phone number, and so on. After

entering information, the person uses his/her mouse and clicks a Done button. For such a program, the CPU

manages its system as follows. To display the initial job application form, the CPU sends information to the

monitor. To gather the person’s data, the CPU reads information from the keyboard and mouse.

 If you’re thinking about buying a computer, you’ll need to judge the quality of its components. To judge

the quality of its components, you need to know certain component details. For CPUs, you should know the

popular CPUs and the range of typical CPU speeds. We present the following CPUs and CPU speeds with

hesitation because such things change in the computer world at a precipitous rate. By presenting such de-

tails, we’re dating our book mercilessly. Nonetheless, we forge ahead. . . .

 At the time of this second edition’s writing:

• Popular CPUs—Core i7 (manufactured by Intel), Phenom II (manufactured by AMD).

• Current CPU speeds—anywhere from 2.5 GHz up to 3.8 GHz.

 What is GHz, you ask? GHz stands for gigahertz and is pronounced with hard g ’s, as in giggle. Giga

means billion, and hertz is a unit of measure that deals with the number of times that something occurs per

Monitor

PrinterScanner

Mouse

Keyboard

USB
flash
drive

Compact
disc

Solid-state
drive

Hard
disk

Storage devices
(auxiliary memory)

Main memory

CPU

 Figure 1.1 A simplifi ed view of a computer

dea7606X_ch01_001-028.indd 3dea7606X_ch01_001-028.indd 3 14/11/12 7:10 PM14/11/12 7:10 PM

4 Chapter 1 Introduction to Computers and Programming

second. A 2.5 GHz CPU uses a clock that ticks 2.5 billion times per second. That’s fast, but a 3.8 GHz CPU

is even faster—it uses a clock that ticks 3.8 billion times per second. A CPU’s clock speed provides a rough

measure for how fast the CPU gets things done. Clock ticks are the initiators for computer tasks. With more

clock ticks per second, there are more opportunities for getting tasks done.

 Main Memory
 When a computer executes instructions, it often needs to save intermediate results. For example, in calcu-

lating the average speed for 100 speed measurements, the CPU needs to calculate the sum of all the speed

values prior to dividing by the number of measurements. The CPU calculates the sum by creating a storage

area for it. For each speed value, the CPU adds the value to the sum storage area. Think of memory as a col-

lection of storage boxes. The sum is stored in one of memory’s storage boxes.

 There are two categories of memory— main memory and auxiliary memory. The CPU works more

closely with main memory. Think of main memory as a storage room next to the boss’s offi ce. The boss is

the CPU, and he/she stores things in the storage room’s storage boxes whenever the need arises. Think of

auxiliary memory as a warehouse that’s across the street from the boss’s building. The boss uses the ware-

house to store things, but doesn’t go there all that often. Since auxiliary memory is considered secondary to

main memory, auxiliary memory is sometimes referred to as secondary storage . We’ll consider auxiliary

memory details in the next subsection. For now, we’ll focus on main memory details.

 The CPU relies on main memory a lot. It’s constantly storing data in main memory and reading data

from main memory. With this constant interaction, it’s important that the CPU and main memory are able

to communicate quickly. To ensure quick communication, the CPU and main memory are physically close

together. They are both constructed on chips, and they both plug into the computer’s main circuit board, the

 motherboard. See Figure 1.2 for a picture of a motherboard, a CPU chip, and main memory chips.

Main memory card

with 8 memory chips

CPU chip

Motherboard

Figure 1.2 Motherboard, CPU chip, and main memory chips

dea7606X_ch01_001-028.indd 4dea7606X_ch01_001-028.indd 4 14/11/12 7:10 PM14/11/12 7:10 PM

 1.2 Hardware Terminology 5

 Main memory contains storage boxes, and each storage box contains a piece of information. For

 example, if a program stores our last name, Dean, it uses eight storage boxes: one for the fi rst half of D, one

for the second half of D, one for the fi rst half of e, one for the second half of e, and so on. After storing the

four letters, the program will probably need to retrieve them at some point later on. For information to be

retrievable, it must have an address. An address is a specifi able location. A postal address uses street, city,

and ZIP code values to specify a location. A computer address uses the information’s position within main

memory to specify a location. Main memory’s fi rst storage box is at the zero position, so we say it’s at ad-

dress 0. The second storage box is at the one position, so we say it’s at address 1. See Figure 1.3 . It shows

Dean stored in memory starting at address 50,000.

Address

·
··

50,000

50,001

50,002

50,003

50,004

50,005

50,006

50,007

·
·
·

D

e

a

n

Memory

contents

 Figure 1.3 The characters D, e, a, n

stored in memory starting at address

50,000

 It’s important to understand the formal terminology when talking about the size of main memory.

Suppose you’re buying a computer and you want to know how big the computer’s main memory is. If you

ask a salesperson how many “storage boxes” it contains, you’ll probably get a perplexed look. What you

need to do is ask about its capacity —that’s the formal term for its size. If you ask for the main memory’s

capacity, the salesperson will say something like, “It’s 1 gigabyte. ” You already know that giga means

 billion. A byte refers to the size of one storage box. So a 1 gigabyte capacity main memory holds 1 billion

storage boxes.

 Let’s describe storage boxes in more detail. You know that storage boxes can hold characters, like the

letter D. But computers aren’t very smart—they don’t understand the alphabet. They only understand 0’s and

1’s. So computers map each alphabet character to a series of sixteen 0’s and 1’s. For example, the letter D

is 00000000 01000100. So in storing the letter D, main memory actually stores 00000000 01000100. Each

of the 0’s and 1’s is called a bit. And each of the eight-bit groupings is called a byte.

 Are you wondering why computers use 0’s and 1’s? Computers understand only high-energy signals

versus low-energy signals. When a computer generates a low-energy signal, that’s a 0. When a computer

generates a high-energy signal, that’s a 1.

 You know that computers store characters as 0’s and 1’s, but did you know that computers also store num-

bers as 0’s and 1’s? Formally, we say that computers use the binary number system. The binary number system

uses just two digits, 0 and 1, to represent all numbers. For example, computers store the number 19 as 32 bits,

00000000 00000000 00000000 00010011. The reason those 32 bits represent 19 is that each 1-value bit rep-

resents a power of 2. Note that there are three 1-value bits. As shown here, the 1-value bits are at positions 0,

1, and 4, where the positions start at 0 from the right side. A bit’s position determines its power of 2. Thus, the

rightmost bit, at position 0, represents 2 raised to the power 0, which is 1 (2 0 � 1). The bit at position 1 represents

dea7606X_ch01_001-028.indd 5dea7606X_ch01_001-028.indd 5 14/11/12 7:10 PM14/11/12 7:10 PM

6 Chapter 1 Introduction to Computers and Programming

2 raised to the power 1, which is 2 (2 1 � 2). And the bit at position 4 represents 2 raised to the power 4,

which is 16 (2 4 � 16). Add the three powers and you get 19 (1 � 2 � 16 � 19). Voila! Appendix 8 contains

additional information about the binary number system. Feel free to peruse the appendix now, or wait un-

til after you’ve read Chapter 12, which introduces another number system—hexadecimal. The appendix

provides an in-depth discussion of the binary and hexadecimal number systems, as well as a third number

system—octal.

 Be aware that main memory is often referred to as RAM. RAM stands for random access memory.
Main memory is considered “random access” because data can be directly accessed at any address; that is,

at a “random” address. That’s in contrast to some storage devices where data is accessed by starting at the

very beginning and stepping through all the data until the target data is reached.

 Once again, if you’re buying a computer, you’ll need to judge the quality of its components. For the

main memory/RAM component, you’ll need to know whether its capacity is adequate. At the time of this

book’s writing typical main memory capacities range from 2 GB up to 8 GB, where GB stands for gigabyte .

 Auxiliary Memory
 Main memory is volatile, which means that data is lost when power to the computer goes off. You might

ask: If data is lost when power goes off, how can anyone save anything permanenly on a computer? The

answer is something you do (or should do) frequently. When you perform a save command, the computer

makes a copy of the main memory data you’re working on and stores the copy in auxiliary memory. Auxil-

iary memory is nonvolatile, which means that data is not lost when power to the computer goes off.

 One advantage of auxiliary memory over main memory is that it’s nonvolatile. Another advantage is

that its cost per unit of storage is much less than main memory’s cost per unit of storage. A third advan-

tage is that it is more portable than main memory (i.e., it can be moved from one computer to another

more easily).

 The disadvantage of auxiliary memory is that its access time is quite a bit slower than main memory’s

access time. Access time is the time it takes to locate a single piece of data and make it available to the com-

puter for processing.

 Auxiliary memory comes in many different forms, the most common of which are hard disks, solid-

state drives (SSDs), universal serial bus (USB) fl ash drives, and compact discs. All these devices are called

 storage media, or simply storage devices . Figure 1.4 shows pictures of them.

 Hard Disks and Solid-State Drives
 Hard disks and solid-state drives serve the same basic purpose: They provide the primary permanent stor-

age for a computer. They have different advantages and disadvantages, which make them attractive to dif-

ferent types of computers. Most desktop computers (computers that remain stationary on or next to a desk)

use hard disks. On the other hand, some laptop computers (computers that are portable enough to sit on

0 1 0 0 1 1

Position 0

Position 1

Position 4 Position 31

dea7606X_ch01_001-028.indd 6dea7606X_ch01_001-028.indd 6 14/11/12 7:10 PM14/11/12 7:10 PM

 1.2 Hardware Terminology 7

someone’s lap) and many tablet computers (computers that use a touch screen for their primary input device,

rather than a keyboard and mouse) use solid-state drives instead of hard disks.

 Solid-state drives are particularly suitable for laptop and tablet computers because they have no moving

mechanical parts. As such, they are more resistant to damage when subject to travel. Also, they are smaller and

lighter than hard disks, which once again makes them particularly suitable for laptop and tablet computers. A

disadvantage of solid-state drives is their cost: Given a solid-state drive and a hard disk device with the same

capacity, the solid-state drive will be quite a bit more expensive. Thus, solid-state drives are usually cost pro-

hibitive for computers with large capacity needs. Desktop computers fall into the large-capacity camp, so they

usually use hard disks. The trend is for portable computers to rely on cloud storage, where computers transmit

their data over the Internet for storage on pools of computers hosted by third-party data centers. With cloud

storage, portable computers’ local storage needs are reduced and solid-state drives become more affordable.

 Although some high-end desktop computers use SSDs, most use hard disks. Hard disks are slower than

SSDs because for a computer to access a particular piece of data on a disk, the computer must wait for the

disk to spin the data to the place where the data can be read. The spinning and reading mechanisms are part

of the disk’s drive . As a disk drive rotates its disks, its heads (electronic sensors) access the disks’ data as it

spins past.

 Access to solid-state-drive storage is faster than access to hard disk storage because solid-state drives

don’t have to wait for mechanical parts to move. Instead, they simply have to wait for electronic signals to

arrive. Electronic signals, traveling at the speed of light, move much faster than spinning disks.

 Off-line Storage
 Although hard disk and solid-state drives are sometimes located outside a computer’s metal case and con-

nected to the computer with a cable (such drives are called external drives), in the interest of speed, most-

hard disk and solid-state drives are located inside a computer’s metal case. Their internal location makes

it diffi cult for them to be transferred from one computer to another. On the other hand, off-line storage
devices, such as USB fl ash drives and compact discs, can be easily transferred from one computer to another

because they are designed to connect and disconnect to and from a computer easily.

Hard disk

Compact disc USB flash drive

Solid-state drive

 Figure 1.4 Hard-disk drive , solid-state drive, compact disc, and USB fl ash drive

dea7606X_ch01_001-028.indd 7dea7606X_ch01_001-028.indd 7 14/11/12 7:10 PM14/11/12 7:10 PM

8 Chapter 1 Introduction to Computers and Programming

 USB fl ash drives, also called thumb drives, are particularly portable because they are the size of a

person’s thumb and they can be hot swapped into virtually any computer. (Hot swapping is when you plug

a device into a computer while the computer is on.) The “USB” in USB fl ash drive stands for “universal

serial bus,” and it refers to a particular type of connection to the computer. More specifi cally, it refers to a

particular type of connection wire and connection socket. A fl ash drive uses that type of connection, and we

therefore call it a USB fl ash drive. USB fl ash drives plug into USB ports, where port is the formal term for a

connection socket. USB ports are ubiquitous on computers, and that is another reason that USB fl ash drives

are particularly portable.

 USB fl ash drives are built with fl ash memory, which is a popular form of nonvolatile storage with no

moving mechanical parts. Solid-state drives also use fl ash memory. However, USB fl ash drives are much

slower than solid-state drives (and slightly slower than hard disks) because USB fl ash drives are connected

to the computer with a narrow, relatively slow USB interface, whereas solid-state drives are connected to the

rest of the computer with a wide, relatively fast interface.

 Compact discs provide a less expensive and slower form of off-line storage. The most popular types of

compact discs can be grouped as follows:

• CD-Audio—for storing recorded music, usually referred to as just “CD” (for compact disc)

• CD-ROM, CD-R, CD-RW—for storing computer data and recorded music

• DVD, DVD-R, DVD-RW—for storing video, computer data, and recorded music

• Blu-ray—for storing video and computer data, designed to replace DVDs

 The “ROM” in CD-ROM stands for “read-only memory.” Read-only memory refers to memory that

can be read from, but not written to. Thus, you can read a CD-ROM, but you can’t change its contents. With

CD-Rs, you can write once and read as many times as you like. With CD-RWs, you can write and read as

often as you like.

 DVD stands for “digital versatile disc” or “digital video disc.” DVDs parallel CD-ROMs in that you

can read from them, but you can’t write to them. Likewise, DVD-Rs and DVD-RWs parallel CD-Rs and

CD-RWs in terms of their reading and writing capabilities.

 Blu-ray, also known as Blu-ray Disc (BD), is the name of an optical disc format that was invented to

store high-defi nition videos and large amounts of data. The technology is called Blu-ray because unlike

DVDs, which use a red laser, Blu-ray discs are accessed using a blue-violet laser. Eventually, Blu-ray discs

will replace DVDs in terms of popularity, but not for several years, because (1) Blu-ray technology is more

expensive, (2) Blu-ray technology has slower access speeds, and (3) Blu-ray players are backward compat-

ible (so DVDs can run on Blu-ray players).

 Storage Capacity Comparison
 Different storage devices have different storage capacities. At the time of this book’s writing:

• Typical hard disks have a capacity range from 250 GB up to 3 TB (TB stands for terabyte, where tera

is 1 trillion).

• Typical solid-state drives have a capacity range from 120 GB up to 512 GB.

• Typical USB fl ash drives have a capacity range from 8 GB up to 64 GB.

• Typical CD-ROMs, CD-Rs, and CD-RWs have a capacity of 700 MB (MB stands for megabyte, where

 mega is 1 million).

• Typical DVDs, DVD-Rs, and DVD-RWs have a capacity range from 4.7 GB up to 8.5 GB.

• Typical Blu-ray discs have a capacity range from 25 GB up to 50 GB.

dea7606X_ch01_001-028.indd 8dea7606X_ch01_001-028.indd 8 14/11/12 7:10 PM14/11/12 7:10 PM

 1.2 Hardware Terminology 9

 File Access
 To access data on your computer, you’ll need to access the fi le that contains the data. A fi le is a group of

related instructions or a group of related data. For example, (1) a program is a fi le that holds a set of instruc-

tions, and (2) a Word document is a fi le that holds text data created by Microsoft Word.

 Files are stored on auxiliary memory storage devices. In order to retrieve a fi le (for the purpose of

viewing, copying, etc.), you need to specify the storage device on which the fi le is stored. On computers

that use Microsoft Windows, the different storage devices are specifi ed using a drive letter followed by a

colon. If your computer has a hard disk drive or a solid-state drive, your computer will refer to one of the

drives using drive letter C (C:). If your computer has additional hard disk drives or solid-state drives, it will

refer to them using subsequent drive letters (D:, E:, etc.). If your computer has compact-disc drives, it will

refer to them using the fi rst unused drive letters starting no earlier than D:. If your computer has additional

storage devices, such as external hard drives and USB fl ash drives, it will refer to them using the next un-

used drive letters, starting no earlier than D:.

 You might have noticed that drive letters A and B were not mentioned in this discussion so far. In the

past, A: and B: were used for fl oppy disk drives. Floppy disks (also called diskettes) are off-line storage

devices that were very popular from the mid-1970s through about 2005. They are called “fl oppy” because

the original forms of these devices would bend, in contrast to hard disks, which do not bend. Computer

manufacturers no longer provide fl oppy disk drives because fl oppy disks have been superseded by more

durable, greater capacity off-line storage devices, such as USB fl ash drives and compact discs.

 Even though fl oppy disks are no longer used, their legacy lives on. Because Windows-based computers

reserved drive letters A and B for fl oppy disk drives in the past, Windows-based computers continue to start

with drive letter C for hard-disk and solid-state drives. Because fl oppy disks became synonymous with fi le

storage in the 1980s and 1990s, software manufacturers introduced fl oppy disk icons that, when clicked,

would save the user’s current fi le. Using a fl oppy disk icon for a fi le-save operation is still the norm today.

This standard fl oppy disk icon should look familiar:

 Common Computer-Hardware Vocabulary
 When buying a computer or when talking about computers with your computer friends, you’ll want to make

sure to understand the vernacular—the terms that people use in everyday speech as opposed to the terms

found in textbooks—so that you will be able to understand what’s going on. When a computer-savvy person

refers to a computer’s memory by itself, the person typically means main memory—the computer’s RAM.

When someone refers to a computer’s disk space, the person typically means the capacity of the computer’s

hard disk.

 Pace of Computer Improvements
 For as long as memory and CPU components have been around, manufacturers of these devices have

been able to improve their products’ performances at a consistently high rate. For example, RAM and

hard disk capacities double approximately every two years. CPU speeds also double approximately every

two years.

 An urban legend is a story that spreads spontaneously in various forms and is popularly believed to

be true. The following exchange is a classic Internet urban legend that comments on the rapid pace of com-

puter improvements. 1 Although the exchange never took place, the comments, particularly the fi rst one, are

relevant.

 1 Snopes.com, Rumor Has It, on the Internet at http://www.snopes.com/humor/jokes/autos.asp (visited in September, 2012).

dea7606X_ch01_001-028.indd 9dea7606X_ch01_001-028.indd 9 14/11/12 7:10 PM14/11/12 7:10 PM

